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Abstract

Bio-inspired electronic circuits have the potential to address some of the shortcomings of
conventional electronic circuits, such as lack of applicability to ill-defined problems, of
robustness, or of adaptivity to unexpectedly changing environments.

Bio-inspired circuits are designed by taking inspiration from principles observed in
biology. The evolution of biological organisms, their development from a fertilized egg,
and their learning capabilities are three sources of bio-inspiration that can be used for this
purpose.

Until now bio-inspired electronics mostly focused on a single aspect of bio-inspiration:
either evolution, development or learning. In this thesis we consider that electronic cir-
cuits should encompass all three aspects to fully benefit from bio-inspiration. These cir-
cuits capable of evolution, development and learning are called POEtic circuits (POE
stands for phylogeny, ontogeny and epigenesis, that mean respectively evolution, devel-
opment and learning).

Conceptually these POEtic circuits, much like biological organisms, are multi-cellular
circuits that evolve following the principles of selection and differential reproduction, they
develop from a single cell and differentiate according to inter-cellular and environmental
signals, and eventually they learn during their lifetime. These circuits may also dynami-
cally reorganize their structure in order to cope with changes in the environment, or when
they are expanded with new cells, sensors or actuators. In comparison to conventional
circuits, POEtic circuits are created automatically using evolutionary principles, even if
only a partial or high-level specification of the problem is known. Development provides
a complex genotype to phenotype mapping, that may lead to fault-tolerance or adaptive
development in order to cope with environmental changes. Finally learning allows these
circuits to memorize past events or adapt their response over time to improve their behav-
ior.

This thesis deals with the evolutionary mechanisms required to evolve these POEtic
circuits. We argue that in order to fully realize the potential of POEtic circuits a novel evo-
lutionary system that takes into account their characteristics and that encompasses both
a genetic encoding and a developmental system is required. Indeed, evolutionary algo-
rithms commonly used to evolve electronic circuits do not exploit the complex dynamics
of development which is seen in biological organisms. They generally use a direct ge-
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netic encoding with a one to one genotype to phenotype mapping. As a consequence the
genetic string grows with the size of the circuits and this may limit the scalability of the
evolutionary approach to larger circuits. Furthermore these encodings do not allow inter-
cellular or environmental interactions during development, which could lead to adaptive
development or fault-tolerant circuits.

In this thesis we develop an evolutionary system suited for multi-cellular POEtic cir-
cuits. This evolutionary system is inspired by the mechanisms of gene expression and
cellular differentiation seen in biological organisms. It attempts to provide better evolv-
ability and scalability than direct genetic encodings, it allows cellular or environmental
interactions during development, and it is computationally simple so that it can be effi-
ciently implemented in hardware. It is furthermore generic, and it makes minimal as-
sumptions on the circuits that are evolved: other than assuming they are multi-cellular, it
only requires local communication between neighboring cells.

We demonstrate the proposed evolutionary system by evolving multi-cellular circuits
for a wide range of applications. The results that we obtain confirm the generality of our
approach and its advantages in comparison to direct genetic encodings.

The proposed evolutionary system is used to evolve structures of differentiated cells,
and it shows better scalability to larger structures in terms of fitness than a direct genetic
encoding. The dynamics of development within the evolutionary system can recover these
structures in case of faults, even at high fault rates. The proposed evolutionary system is
used to evolve multi-cellular circuits composed of spiking neurons to recognize patterns
and to control the navigation with obstacle avoidance of a mobile robot, and in comparison
it outperforms a direct genetic encoding. Finally it is used to evolve circuits capable of
learning that control a mobile robot in a vision-based learning and navigation task. This
last application demonstrates the three aspects of bio-inspiration of POEtic circuits in a
single task: evolution, development and learning.



Version abrégée

Les circuits électroniques bio-inspirés ont le potentiel de remédier à certaines carences
des circuits électroniques conventionnels, tels que la difficulté à les utiliser lorsqu’une ap-
plication est mal définie, leur manque de robustesse, et leur manque d’adaptabilité lorsque
l’environnement change de façon imprévue.

Les circuits bio-inspirés sont créés en prenant inspiration de principes observés dans
la biologie. L’évolution des organismes biologiques, leur développement d’un oeuf fertil-
isé, et leur capacité d’apprentissage sont trois sources de bio-inspiration qui peuvent être
utilisées pour cela.

Jusqu’à présent l’électronique bio-inspirée s’est grandement focalisée sur un seul as-
pect de la bio-inspiration: soit l’évolution, le développement ou l’apprentissage. Dans
cette thèse nous considérons que les circuits électroniques devraient englober tout les trois
aspects pour pleinement bénéficier de la bio-inspiration. Ces circuits capables d’évoluer,
de se développer et d’apprendre sont appellés des circuits POEtic (POE signifie phylo-
genèse, ontogenèse et épigenèse, soit respectivement évolution, développement et ap-
prentissage).

Conceptuellement ces circuits POEtic sont, de même que les organismes biologiques,
des circuits multi-cellulaires qui évoluent en suivant le principe de la sélection et de la re-
production différentielle, ils se développent à partir d’une seule cellule et se différentient
en fonction des signaux inter-cellulaires et environnementaux, et finalement ils appren-
nent durant leur vie. Ces circuits peuvent aussi réorganiser dynamiquement leur structure
de façon à tolérer des changements dans l’environnement, ou lorsqu’ils sont agrandis avec
de nouvelles cellules, senseurs ou actuateurs. En comparaison avec les circuits conven-
tionnels, les circuits POEtic sont créés automatiquement en utilisant les principes évo-
lutionnaires, même lorsque seulement une spécification partielle ou de haut niveau à un
problème est connue. Le développement pourvoit une conversion complexe de génotype
à phénotype qui peut amener à la tolérance aux pannes ou au développement adaptatif
de façon à faire face à des changements environnementaux. Finalement l’apprentissage
permet à ces circuits de mémoriser des évènements passés et d’adapter leur réponse au
cours du temps de façon à améliorer leur comportement.

Cette thèse traite des mécanismes évolutionnaires requis pour évoluer ces circuits PO-
Etic. Nous soutenons qu’afin de réaliser pleinement le potentiel des circuits POEtic, un
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nouveau système évolutionnaire est requis qui prend en compte les caractéristiques de ces
circuits et qui englobe à la fois un codage génétique et un système développemental. En
effet, les algorithmes évolutionnaires couremment utilisés pour évoluer des circuits élec-
troniques n’exploitent pas la dynamique complexe du développement qui est observée
dans les organismes biologiques. Ils emploient généralement un codage génétique direct
avec une conversion un à un du genotype vers le phénotype. En conséquence la chaîne
génétique croît avec la taille des circuits et cela peut limiter la scalabilité de l’approche
évolutionnaire à des circuits plus grands. De plus, ces codages ne permettent pas les in-
teractions inter-cellulaires ou environnementales durant le développement qui pourraient
mener au développement adaptatif du circuit ou à de la tolérance aux pannes.

Dans cette thèse nous développons un système évolutionnaire destiné aux cir-
cuits multi-cellulaires POEtic. Ce système évolutionnaire est inspiré des mécanismes
d’expression génétique et de différentiation cellulaire observés dans les organismes bi-
ologiques. Il tente d’amener une meilleure évolvabilité et scalabilité que les codages
génétiques directs, il permet les interactions inter-cellulaires et environnementales durant
le développement et il est computationnellement simple, ce qui permet une implémen-
tation efficace en hardware. De plus il est générique et fait des assomptions minimales
quant aux circuits qui sont évolués: outre l’assomption qu’ils sont multi-cellulaires, il
requiert uniquement une communication locale entre cellules voisines.

Nous démontrons le système évolutionnaire proposé en évoluant des circuits multi-
cellulaires pour une large gamme d’applications. Les résultats que nous avons obtenus
confirment la généralité de notre approche et sa meilleure performance en comparaison à
un codage génétique direct.

Le système évolutionnaire proposé est utilisé pour évoluer des structures de cellules
différentiées et il montre une meilleure scalabilité lors de l’évolution de structures plus
grandes en comparaison à un codage génétique direct. La dynamique du développement
au sein du système évolutionnaire permet de récupérer ces structures après qu’elles aient
été endommagées, même avec un fort taux d’endommagement. Le système évolution-
naire proposé est utilisé pour évoluer des circuits multi-cellulaires composés de neurones
à impulsions pour faire de la reconnaissance de formes et pour contrôler la navigation avec
évitement d’obstacles d’un robot mobile. Il atteint une meilleure performance en com-
paraison à un codage génétique direct. Finalement il est utilisé pour évoluer des circuits
capables d’apprentissage qui contrôlent un robot mobile dans une tache d’apprentissage
et de navigation basée sur la vision. Cette dernière application démontre les trois aspects
de la bio-inspiration des circuits POEtic dans une même tâche: l’évolution, le développe-
ment, et l’apprentissage.
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1 Introduction

1.1 Introduction

Electronic circuits are everywhere, from the simplest electronic toy or digital clock up
to the most powerful computer. They are even used in the most hazardous environments
such as in space where they may control satellites or exploratory rovers.

Increasingly complex circuits are designed, roughly following Moore’s observation
that the number of transistors in integrated circuits doubles about every 18 months [121],
and nowadays integrated circuits containing more than 100 million transistors are com-
mon.

Yet, despite the success of designing increasingly larger circuits, current circuits may
fall short in terms of robustness, of applicability to ill-defined problems, and of adaptivity
to unexpectedly changing environments.

Electronic circuits are often brittle and offer little redundancy: a single defective tran-
sistor may lead to a failure of the entire circuit. Circuits usually cannot be designed unless
the problem is fully specified, yet in some cases a specification may be difficult to obtain:
the required models may be incomplete, or some highly complex functionalities may not
lend themselves to analysis. For instance the controller of an autonomous robot may be
difficult to design due to the complex relationship between what the robot perceives in
its environment and the consequences of the motor actions with respect to the planned
objective. Eventually circuits are designed to operate within precise environmental con-
ditions and may not operate correctly when those change. For instance when the wheel
of a planetary exploration rover fails, the electronics controlling the robot may need to be
reconfigured.

In comparison, biological organisms are robust. The loss of a cell is generally not
lethal, some organs are redundant, and in some cases limbs can even be regenerated
through development [15, 183]. Biological organisms can achieve complex tasks in their
environments, yet they arise from the relatively simple process of natural selection and
differential reproduction also known as evolution [21]. Evolution is a continuous pro-
cess that lets organisms adapt to changes in their environment, even on short time scales
[6, 8, 133]. Furthermore organisms can learn, which allows them to adapt their behaviors
in function of past events [30].

1
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One way to compensate the shortcomings of current electronics is to take inspiration
from principles observed in biology to designbio-inspired electronic circuits. In this
way some of the characteristics of biological organisms, such as robustness, adaptivity or
learning, may be provided to hardware.

The evolution of organisms over the course of generations (Phylogeny), the devel-
opment of multi-cellular organisms from a fertilized egg (Ontogeny), and the learning
capabilities that biological organisms exhibit during their lifetime (Epigenesis) are three
sources of inspiration that may be used in bio-inspired electronics. These three sources of
inspiration form the so-called POE model of bio-inspiration [139, 146].

Evolution inspired search and optimization algorithms known as evolutionary algo-
rithms. These algorithms can be used to create orevolveelectronic circuits; a discipline
known as evolvable hardware [64]. Circuits can be evolved even with only a partial or
high-level specification of the problem. Evolvable hardware is believed to have a lot of
potential [191], for instance in adaptive hardware [78], or in fault-tolerant hardware [83],
and it may allow to find novel or more efficient circuits than those obtained with tradi-
tional techniques [18, 165, 180].

Development can “grow” multi-cellular electronic circuits from a single cell and this
may provide a self-reproducing or self-repairing substrate for the implementation of elec-
tronic circuits [109], as illustrated by the self-repairing BioWatch [149].

Learning inspired reconfigurable circuits that perform online categorization [128]. It
also allows neural robot controllers to improve their response in function of past events,
for instance to adapt to new environments or to new robots [44, 126]. Eventually learning
may be used to discriminate correct from incorrect behaviors in electronic circuits [14].

1.2 Motivation and aims of this thesis

Current bio-inspired hardware tends to focus on a single aspect of bio-inspiration: either
evolution, development, or learning. Yet the three aspects are complementary.

In this thesis we take the stance that bio-inspired electronic circuits should encompass
all three aspects to fully benefit from bio-inspiration. This could for instance lead to cir-
cuits that are automatically evolved, that adapt to the characteristics of their environment,
that are fault-tolerant, and that learn while operating.

We call these electronic circuits capable of evolution, development and learningPO-
Etic circuits[178], referring to the POE model of bio-inspiration.

The integration of evolution, development and learning mechanisms in hardware
translates into multi-cellular circuits, whose basic unit of organization is, like in living
organisms, the cell.

Cells contain the genetic code of the entire circuit. They have a developmental mech-
anism that controls their functional differentiation according to the genetic code and to
cellular and environmental signals. Cells have a functional part, that depends on the
application. It may implement for example elementary logic gates or more complex func-
tions such as neurons. Learning is implemented in the functional part of cells, for instance
by using neurons capable of adapting their synaptic weights with a learning rule. Finally
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the functionality of POEtic circuits is obtained automatically by evolution of the genetic
code stored in the cells.

Conceptually this multi-cellular structure, together with the fact that cells contain
the genetic code of the entire circuit and a developmental mechanism, allows the multi-
cellular circuit to grow from a single cell and it allows self-repair mechanisms by having
spare cells differentiate and replace at run-time the functionality of faulty cells. Further-
more it may allow dynamic reorganization of the structure of these circuits in order to
cope with changes in the environment, or when they are expanded with new cells, sensors
or actuators.

Since evolutionary, developmental and learning mechanisms may vary from applica-
tions to applications, POEtic circuits are not directly implemented in silicon, but instead
they are obtained by configuring or programming a custom reconfigurable device known
as thePOEtic chip[163] with the desired mechanisms. This POEtic chip includes specific
features required for the implementation of bio-inspired systems in hardware.

In this thesis we consider the mechanisms required for the evolution of these bio-
inspired multi-cellular POEtic circuits.

In particular evolutionary algorithms commonly used in evolvable hardware are not
well suited for multi-cellular POEtic circuits. We argue that to fully realize the potential
of POEtic circuits a novel evolutionary system is required that takes into account their
characteristics and that encompasses both a genetic encoding and a developmental system.

Indeed evolvable hardware, despite despite showing promising initial results, does not
seem to scale to more complex circuits [59, 79, 82, 182]. We believe that this problem
comes partly from the direct genetic encodings with one to one genotype to phenotype
mapping that are often used. These encodings lead to genetic strings that grow with the
size of the circuits and this may limit the scalability to larger circuits.

Furthermore, direct genetic encodings are not suited for multi-cellular circuits capable
of dynamic reorganization such as POEtic circuits, since they assume that the number of
elements in the circuit is known in advance and does not change throughout the life of the
circuit.

Finally conventional evolutionary algorithms do not exploit the complex dynamics of
development mediated by gene regulation that is observed in biological organisms. They
use a static mapping from genotype to phenotype that does not allow the inter-cellular
or environmental interactions during development which could provide fault-tolerance or
dynamic reorganization of the circuit when environmental conditions change.

We therefore develop an evolutionary system suited for multi-cellular POEtic circuits.
Notably we focus on developing an evolutionary system that attempts to provide better
evolvability and scalability than direct genetic encodings, that allows cellular or envi-
ronmental interactions during development, and that is computationally simple so that it
can be efficiently implemented in hardware. We refer to this evolutionary system as the
morphogenetic system.

We then use this system to evolve multi-cellular circuits for a wide range of appli-
cations that combine evolution, development and learning. We demonstrate the imple-
mentation of some of these circuits in hardware, either on field-programmable gate arrays
(reconfigurable devices that can be programmed to implement electronic circuits) or on
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the POEtic chip (a reconfigurable device designed specifically for bio-inspired applica-
tions).

1.3 Achievements

The main achievements of this thesis are detailed below, with references to the relevant
chapters.

Evolutionary morphogenesis:We develop an evolutionary system (called morpho-
genetic system) suited for multi-cellular POEtic circuits that uses a genotype to phenotype
mapping that takes the form of a simple developmental process inspired by the mecha-
nisms of gene expression and cellular differentiation in biological organisms (chapter 6).
We describe the multi-cellular implementation of the morphogenetic system in hardware.
We show that it can be implemented with few resources and that it allows fast execution
in constant time, regardless of the size of the circuit.

Applications: In order to demonstrate a multi-cellular architecture that is assumed
by the morphogenetic system, we first show the evolution and growth (a simplified type
of development with a direct genetic encoding) of a multi-cellular circuit on the POEtic
chip. Growth means that cells of the circuit interconnect and differentiate at run-time in
the chip. We demonstrate this circuit by evolving it to approximate Boolean functions and
control the navigation of a robot (chapter 5). This circuit illustrates mechanisms that may
lead to self-repairing circuits.

After introducing the morphogenetic system we use it in several multi-cellular appli-
cations. We use it to evolve structures of differentiated cells, which are a prerequisite for
evolvability, and we show that it offers better scalability than a direct genetic encoding
on the structures that are tested. Furthermore we show that the dynamics of the devel-
opmental process within the morphogenetic system provides tolerance to faults to these
structures of cells (chapter 6).

We use the morphogenetic system to evolve multi-cellular circuits composed of spik-
ing neurons to perform pattern recognition and to control the navigation of a robot in a
task of obstacle avoidance. We demonstrate this multi-cellular controller embedded in
hardware on a mobile robot. We find that the morphogenetic system outperforms a direct
genetic encoding on these tasks (chapter 7).

The previous circuits are not capable of learning. We consider multi-cellular cir-
cuits capable of learning by employing a more complex spiking neural model which has
a learning rule known as spike-timing dependent plasticity. We show that the morpho-
genetic system can evolve these circuits to improve their learning performance in a task
that consists in learning and discriminating synthetic moving stimuli (chapter 8).

Finally we evolve a circuit to control the navigation of a mobile robot in a task that
requires learning. In this task a robot provided with vision learns a particular moving
visual cue and afterwards it takes a predefined action when it encounters the learned cue
in the environment (chapter 9). This application demonstrates POEtic circuits comprising
evolution, development and learning in a single task.
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1.4 Structure of the thesis

Since this thesis deals with evolutionary mechanisms for bio-inspired hardware, we re-
view first evolvable hardware in chapter 2. We introduce evolutionary algorithms, we de-
scribe the principles of the evolution of electronic circuits, and we highlight the strengths
of evolvable hardware with examples of evolved digital and analog circuits. Finally we
discuss the limitations of evolvable hardware, such as the issue of scalability, and we
suggest that more complex, indirect genetic encodings may be one way to alleviate these
limitations.

Indirect genetic encodings may take the form of developmental systems, that we re-
view in chapter 3. We propose a classification of developmental systems applied to elec-
tronic circuits that is based on characteristics of their implementation. This classification
evidences one class of developmental systems that we consider for the morphogenetic
system.

In chapter 4 we describe a generic multi-cellular hardware architecture that allows the
integration of evolution, development and eventually learning mechanisms. This archi-
tecture, when implemented in reconfigurable electronic devices, leads to POEtic circuits.
A reconfigurable device ideally suited to implement POEtic circuits is the POEtic chip.
We explain how the features of this POEtic chip are useful for hardware bio-inspired
mechanisms and we show how this chip may be configured or programmed to implement
POEtic circuits.

In chapter 5 we implement on the POEtic chip a multi-cellular circuit capable of evo-
lution and growth (a simplified mechanism of development with a direct genotype to phe-
notype mapping) which demonstrates the architecture introduced previously. We evolve
this circuit to approximate Boolean functions and to control a mobile robot in a task of
obstacle avoidance.

In chapter 6 we introduce the morphogenetic system, the genetic encoding and devel-
opmental system designed for POEtic circuits. We analyze the evolvability, scalability
and the tolerance to faults of the morphogenetic system in a synthetic application that
consists in evolving structures of differentiated cells.

In chapter 7 we use the morphogenetic system to evolve circuits composed of spiking
neurons for pattern recognition and robot control. These circuits are however not yet
capable of learning.

The following two chapters deal with multi-cellular circuits capable of learning. In
chapter 8 we describe a circuit composed of spiking neurons with a learning mechanism
known as spike-timing dependent plasticity. We show that this circuit can be evolved with
the morphogenetic system to improve its learning performance in a task that consists in
learning and discriminating moving synthetic stimuli.

In chapter 9 we evolve with the morphogenetic system this same circuit to control the
navigation of a mobile robot in a task that requires learning. In this task a robot learns
moving visual cues and performs a predefined action when the learned cue is perceived in
the environment.

In chapter 10 we conclude this thesis, highlight its contributions, and propose further
research directions.
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2 Evolution of electronic circuits

Abstract

Natural evolution relates to how biological organisms undergo natural selection and dif-
ferential reproduction and change over the course of generations. It has inspired search
and optimization techniques known as evolutionary algorithms. Evolutionary algorithms
can be used to create electronic circuits: a field known as evolvable hardware. This chap-
ter reviews evolvable hardware. It gives the principles of circuit evolution, introduces the
evolutionary algorithms that are used to evolve circuits, and shows examples of evolved
circuits that evidence the strengths of the evolvable hardware approach. In particular
evolvable hardware allows to find novel, more efficient or unconventional circuits in com-
parison to those that are obtained with traditional design techniques. Finally this chapter
discusses the limitations of evolvable hardware, notably the issue of scalability that limits
the size of evolved circuits. Some ways to deal with this issue are described and the ap-
proach that will be followed to design the evolutionary system for multi-cellular POEtic
circuits is outlined.

2.1 Introduction

Evolutionary algorithms are search and optimization algorithms that are inspired by the
evolution of natural organisms. Evolvable Hardware (EHW) consists in using evolution-
ary algorithms to create hardware systems such as electronic circuits or mechanical struc-
tures (e.g. robot or antenna morphologies). This process works by evolving a set of
instructions that describes how to build these systems. The objective of this chapter is to
review evolvable hardware used to create electronic circuits.

Turing, in the 1940s, came up with the idea of unorganized machines that were “neural
networks” composed of randomly interconnected two-input NAND gates. He proposed
to use an evolutionary search method to train these networks [159]. He did not investigate
this further, but this may be the first idea of EHW.

Nowadays there are reconfigurable devices that can be programmed to implement
electronic circuits. The common definition of EHW was given in 1993 by Higuchi that

7
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reported on the evolution of such a device [64]:

This paper introduces an idea which the authors hope and believe will create
not only a new branch of Artificial Life, but may also serve as the basis for
a radically new approach to electronic and computer design. The idea can be
expressed in two words, “evolvable hardware”. Software configurable hard-
ware, such as programmable logic arrays, are on the market which accept
a bit string instruction which is used to configure or “wire up” a hardware
circuit to give it a desired architecture. This can be done an indefinite num-
ber of times. By treating the bit string instruction as a Genetic Algorithm
“chromosome”, one has the means to evolve hardware.

In this thesis we consider EHW as the application of evolutionary algorithms to find
circuits satisfying a predefined objective function. Circuits implemented in reconfigurable
devices or assembled from discrete components, based on low-level building blocks (e.g.
logic gates) or higher-level building blocks (e.g. neurons), are all particular instances of
EHW as long as the building blocks are implemented in hardware and an evolutionary
algorithm is used to find the functionality and interconnections of those building blocks.

EHW allows to create electronic circuits from high-level specifications. For instance
an electronic circuit that controls a robot can be evolved by measuring the fitness of the
circuit from the behavior of the robot, rather than from the precise relation between the
inputs and outputs of the circuit. By using an evolutionary process, the creation of elec-
tronic circuits is also automated. Moreover, we will show in this chapter that novel and
more efficient circuits can be found with EHW.

Section 2.2 gives the principles of the evolution of electronic circuits. Evolutionary
algorithms that are used to evolve these circuits are introduced in section 2.3. In section
2.4 we highlight some of the digital circuits that have been evolved, focusing on those
circuits that show the advantages of evolvable hardware. Section 2.5 deals in the same
way with the evolution of analog circuits. Section 2.6 discusses the evolutionary approach
to create electronic circuits and evidences some of its limitations, notably a scalability
issue that tends to limit the size of evolved circuits. Some ways to deal with this issue are
described in section 2.7. In section 2.8 we conclude and outline the approach that will be
followed later in this thesis to design the evolutionary system for multi-cellular POEtic
circuits.

2.2 Principles of circuit evolution

When an evolutionary process is used to create a circuit we say that the circuit isevolved,
contrarily to the traditional approach where onedesignsa circuit. Evolving a circuit re-
quires first to select the components and the interconnections between these components
that are subject to evolution. Afterwards a genetic encoding that describes the configu-
ration of the circuit is defined. Eventually a pool of circuits represented by their genetic
strings are “bred” using an evolutionary algorithm (EA) with the objective of maximizing
afitnessfunction that describes the adequacy of the circuits at performing a specific task.
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All the design techniques can potentially be automated with an evolutionary approach.
For this reason we briefly summarize how circuits are designed.

A circuit is usually first specified by an abstract description, and once it is fully spec-
ified this description is translated into a physical implementation.

Abstract descriptions include textual representations such as Hardware Description
Languages (HDLs) or graphical representations such as schematics or state transition di-
agrams.

HDLs such as VHDL (Very High Speed Integrated Circuits Hardware Description
Language) or Verilog describe a circuit in much the same way that source code defines
a computer program. Hierarchical modular systems can be represented and modules can
be described using instructions that represent the behavior of elementary logic gates (e.g.
AND gates, flip-flops).

A schematic is a graphical representation of an electronic circuit, that depicts the ele-
ments of the circuit and the interconnections of these elements. The elements can be logic
gates, or higher level blocks composed of several elementary logic gates. State transition
diagrams are often used to describe the behavior of Finite State Machines (FSMs). A FSM
defines a sequence of actions that depends on the internal state of the machine and on the
state of the inputs. For instance a counter is a simple FSM. State transition diagrams
graphically describe the transitions between the states of the machine, the conditions that
trigger the transitions, and the effect of transitions on the outputs of the machine.

The circuit description can be implemented physically in different ways. Discrete
components (e.g. resistors, transistors, capacitors) can be used and connected together
by means of wires or on a printed circuit board. Since building circuits from discrete
elements takes a lot of space, integrated circuits can be created. An integrated circuit
consists of a single piece of silicon (a wafer) where all the discrete elements are imple-
mented. Creating an integrated circuit is a costly and complex process that requires to
draw the layout of the lithographic masks used in the manufacturing process. Manufac-
turing itself takes several months. Therefore integrated circuits are generally only done
when a circuit must be produced in very large quantities.

Finally there are now reconfigurable devices that can be used to implement various
electronic circuits by simple programming. Programmable Array Logic (PAL) are simple
devices that can implement Boolean functions. Field-Programmable Gate Arrays (FP-
GAs) are devices that can implement any digital circuit, within the space available in the
device [16]. These devices can be programmed from a schematic or a HDL description of
a circuit using tools provided by the manufacturer of the device. These tools try to min-
imize the resources used on the device and maximize the operating speed of the circuit.
This process is complex and can take from several minutes up to several hours. Eventu-
ally these tools produce the device configuration string that is downloaded to the reconfig-
urable device to program the corresponding circuit. There are also reconfigurable devices
for analog circuits. They are known as Field-Programmable Analog Arrays (FPAAs) and
are programmed in a similar way to FPGAs.

Circuits can be evolved by encoding in the genetic string the abstract representation
of the circuit, for instance its schematic or its textual HDL description. The fitness of
the circuit can be measured in a physical implementation of the circuit, for instance in a
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reconfigurable device. However, since the conversion of the abstract representation into
the device configuration string can take a lot of time, this is often impractical during
evolution. Therefore the fitness is often measured in a simulation of the circuit, and only
once the desired circuit is found it is physically implemented. Alternatively, the genetic
string can consist directly of the configuration string of a reconfigurable device. In this
way faster evolution can be achieved with the fitness directly measured in hardware.

Evolvable hardware can be classified depending on how the fitness is measured,
where is situated the evolutionary algorithm, and how much constraints are applied on
the evolved circuits. When the fitness of a circuit is evaluated from a simulation of the
circuit, evolution isextrinsic. Instead, when the fitness is evaluated from a physical im-
plementation of the circuit, evolution isintrinsic [24]. Evolution ison-chip when the
evolutionary algorithm is implemented on the same physical medium as the circuits that
are are evolved, andoff-chip when the evolutionary algorithm is elsewhere (e.g. on an
external processor such as a desktop computer) [173]. Finally evolution isconstrained
when only a subset of all possible circuit configurations are allowed, for example when a
specific circuit topology is imposed. When the evolutionary process is free to explore all
possible circuit configurations, evolution is said to beunconstrained[167].

2.3 Evolutionary algorithms

Evolutionary algorithms (EAs) are a family of search [26] and optimization algorithms
that take inspiration from the process of selection and differential reproduction observed
in natural evolution.

Evolutionary algorithms include genetic algorithms, genetic programming, evolution
strategies and evolutionary programming. Those algorithms operate on a set of candidate
solutions (i.e. points in the search space) that is often referred to as a population of
individuals, chromosomes or genetic strings.

EAs require a scalar measure of fitness to operate. The fitness indicates the perfor-
mance of candidate solutions at optimizing the problem at hand. EAs start with a ran-
domly initialized population (i.e. the first generation). The fitness of each individual in
the population is measured. If the best individual satisfies the optimization goal then the
process stops. Individuals are then selected for reproduction according to their fitness:
individuals performing well have a higher probability of being selected than individuals
performing badly. Genetic operators such as mutation (that randomly modifies an indi-
vidual) and crossover (that combines the genetic material of two individuals) are applied
to the selected individuals to create a new population. This population forms a new gen-
eration. At this point the fitness of the individuals is again measured, and the process is
repeated until an individual that satisfies the fitness criterion is found.

Genetic Algorithms (GAs) are generic algorithms that operate on a coding of the pa-
rameters of the problem [50, 70, 118]. This coding is often a simple string of bits or digits
(the “genetic string”). This string is divided into genes that each represent one parameter
of the problem. For instance an integer value can be represented by its binary coding.
The process that decodes the genetic string into the parameters is called the genotype to
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phenotype mapping. Since GAs operate on an encoded representation of the parameters,
the algorithm needs not be modified when it is applied to other parameters (e.g. real
values instead of integer values). This allows GAs to be very general optimization algo-
rithms. When the genetic string is binary, the mutation operator consists in random bit
flips and the crossover exchanges randomly selected substrings between two individuals.
GAd are often used in evolvable hardware because the configuration of a circuit, such as
a reconfigurable device, is easily represented by a string of bits.

Evolution Strategies (ESs) differ from GAs by operating directly on the parameters
(i.e. the phenotype) rather than on an encoded representation of them [130, 144]. Individ-
uals are composed of two vectors: the object-parameter vector and the strategy-parameter
vector. The object-parameter vector represents the parameters that are optimized (e.g. real
values). The strategy-parameter vector is of the same size as the object-parameter vec-
tor and its components control the mutation rate of the corresponding object-parameters.
Mutation of the object-parameter is performed by adding a normal distributed random
number, whose standard deviation is given by the strategy-parameter. Mutation of the
strategy-parameter is performed by randomly increasing or decreasing the standard devi-
ation. The crossover operator results in object-parameter and strategy-parameter vectors
that inherit each element from one of the two parents with a 50% probability. ESs are
sometimes used in EHW when a circuit is represented by a string of numbers, such as
when schematics are evolved.

Genetic Programming (GP) allows to automatically create computer programs in the
form of a tree structure [89, 92]. Each node of the tree represents a function, and the
branches represent the data flow. The output of a node, that represents the return value
of the node function, is sent across the branches to connected nodes. The program is
interpreted by traveling the tree from the terminal leaves to the root. Terminal leaves
represent input data to the program and the root of the tree is the output of the program.
Genetic operators specific to the tree structure are used. Crossover exchanges randomly
selected subtrees between two individuals. Mutation changes the function of a node or
the values at terminal leaves.

Evolutionary Programming (EP) is used to evolve finite state machines [45]. The FSM
is represented by two functions. The first one describes the state transitions based on the
machine state and the inputs. The second describes the output of the FSM, also based on
the machine state and the inputs. Genetic operators can modify these, e.g. by adding or
removing states, changing the transition rules, or changing the outputs of the machine.

The key difference between these algorithms lies in the representation of the prob-
lem (encoding) and in the search operators they employ. They can be considered as a
population-based version of a generate-and-test method. This allows to link these meth-
ods with other search methods such as simulated annealing or tabu search [192].

Bäck and Schwefel compared EP, ESs and GAs on a set of function optimization
problems [7]. They pointed out that EP and ESs were more oriented towards parameter
optimization, whereas GAs were more general purpose algorithms. In their experiments
ESs were converging faster than GAs due to the self-adaptation of the strategy-parameter
vector of ESs.

In EHW, GAs and ESs are the most commonly used evolutionary algorithms. GP
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is rather used to evolve computer programs, although those may implement Boolean or
analog functions akin to electronic circuits [89, 90]. EP is rarely used in the EHW com-
munity.

2.4 Digital circuit evolution

In this section we illustrate three approaches to the evolution of digital circuits: the ex-
trinsic evolution of schematics, the intrinsic evolution of simple Boolean logic circuits,
and the unconstrained evolution of FPGAs. We illustrate each approach by examples that
show the strength of EHW and the specificity of evolved circuits.

2.4.1 Schematic evolution

Schematic evolution refers to the evolution of the schematic representation1 of a circuit.
Since implementing a circuit represented by a schematic in a physical device is a process
that takes time and requires costly components (e.g. reconfigurable devices), schematic
evolution is often extrinsic. For this reason feedback loops that may generate oscillating
circuits are avoided because these are difficult to simulate accurately.

Schematic evolution can lead to circuits that implement known functionalities in novel
ways. This was evidenced by Miller et al. that evolved a 6 tap digital finite impulse
response (FIR) filter using only multiplexers [113] (i.e. the impulse response of the filter
lasts 6 sampling periods). To evolve this circuit Miller et al. used a genetic encoding
known as Cartesian Genetic Programming (CGP) [115]. CGP encodes the functionalities
of the elements in the circuit and their interconnections with a string of numbers. All the
signals available in the circuit (i.e. the inputs of the circuit and the outputs of the elements
inside the circuit) are numbered sequentially. The functionality and connectivity of each
element is encoded by a sequence of numbers (3 numbers for two-input elements, or
4 for three-input elements). The first numbers indicate to which signals the inputs are
connected. The last number indicates the functionality of the element. The outputs of
the circuit are encoded by additional numbers which indicate to which signals they are
connected. The string of numbers is then evolved using an evolution strategy. Figure 2.1
illustrates this genetic encoding.

To obtain the FIR filter a 7x7 array of logic was evolved using CGP. Signal samples
were provided as inputs to the evolved circuit, and the output of the circuit had to provide
the filtered signal. Circuits that displayed the desired band-pass filtering characteristic
were successfully evolved. The authors emphasized that no explicit multiplications or
additions were used in the circuit and that there is no known mathematical way to design
a filter using only multiplexers.

Schematic evolution can also lead to circuits that require less logic elements than their
counterparts created with standard methods. This was demonstrated by Vassilev et al. that

1A schematic is a graphical representation of an electronic circuit, that depicts the elements of the circuit
and the interconnections of these elements.



2.4. DIGITAL CIRCUIT EVOLUTION 13

10
XOR

10
XOR

16
MUX

6
AND

0

1

2

3

4

5

6

7

Circuit encoding: 0 2 10  1 3 6  4 4 10  1 5 3 16  6 7

Figure 2.1: Encoding of a circuit with Cartesian genetic programming. The signals available
in the circuit are sequentially numbered. Those signals include the inputs of the circuit, and
the outputs of the logic elements. In the figure the signals are numbered from 0 to 7. The
genetic encoding of the circuit consists of a string of numbers. Three (for two-input elements)
or four numbers (for 3-input elements) are used to encode the connectivity and functionality
of each element in the circuit. The first numbers indicate to which signals the inputs of the
element are connected. The last number (indicated in bold) represents the functionality of the
element (e.g. 10 is a XOR, 6 is an AND). In this example, the first element is encoded with
the numbers “0 2 10”. This means that the first input is connected to signal 0, the second
is connected to signal 2 and the functionality is a XOR. The outputs of the circuit are also
encoded by numbers that indicates to which signals they are connected. Here the outputs are
connected to signals 6 and 7 (from [113]).

evolved 2x3, 3x3, 3x4 and 4x4 bit multipliers using CGP. They found circuits using less
two-input gates than the best known conventional circuits.

CGP is not the only way to evolve schematics of circuits (see also [20, 166]). Since
the authors did not compare the results obtained by CGP with other search methods (e.g.
conventional genetic algorithm, simulated annealing), there is no indication that CGP is
the best algorithm for this type of problems.

For example, using a different but related encoding, Coello et al. evolved several
Boolean circuits from elementary logic gates that proved to be more efficient than those
obtained using traditional methods [18]. These circuits were evolved from an array of
logic gates where gates, in contrast to CGP, were only allowed to connect to others in
the immediately preceding column. The fitness function was a multi-objective fitness
function that rewarded circuits that had valid behaviors and that minimized the number
of gates. Therefore there was explicit pressure to find circuits with a minimum number
of logic gates. Kalganova et al. similarly used multi-objective fitness functions to evolve
arithmetic circuits while minimizing their size [80].

Multi-objective fitness functions have also been used to evolve circuits that must sat-
isfy several objectives, such as filters where constraints on signal phase and amplitude, as
well as on the stability of the filter, must be satisfied [142].

2.4.2 Intrinsic evolution of Boolean logic circuits

Extrinsic schematic evolution requires a computer that simulates the circuits to measure
their fitness, but in some applications high speed and compact implementations are re-
quired. In this case evolution is best performed intrinsically, by directly evolving the
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Figure 2.2: Simplified structure of a PAL. The output of the PAL is equal to the OR of several
AND gates that are represented by the horizontal lines. The AND is done on the signals that
are connected to the horizontal lines (illustrated by a black dot). In this example the first AND
gate does the product between I0 and I2 and the output of the second AND gate is equal to I1.
The output of the circuit is the sum (OR) of those two terms (from [66]).

configuration string of a reconfigurable device and measuring the fitness on the physi-
cal circuit. Reconfigurable electronic devices such as Programmable Array Logic (PAL),
which are designed to implement Boolean logic function, can be used for this purpose.

Since any Boolean logic function can be represented by a sum of product terms, the
PAL architecture is designed to allow an efficient implementation of those terms. The
architecture of a PAL is illustrated in figure 2.2. Each output signal of the PAL comes
from an OR gate that does the sum operation. The inputs of the OR gate come from
programmable AND gates that do product operations. Each AND gate is represented by a
distinct horizontal wire in the figure. The inputs of the AND gates are selected among the
input signals and their inverse, or they can remain unconnected. Signals connected to the
AND gates are represented by a black dot. In the figure, the upper input of the OR gate
receives the product ofI0 andI2. The lower input receivesI1. Therefore the resulting
Boolean function isOutput = I0 · I2 + I1. The connections to the AND gates are
implemented with one-time programmable fuses, or reprogrammable memory elements.
These circuits can be evolved by considering the state of all the connections of the AND
gates as the genetic string of the circuit.

Higuchi was the first to show digital circuit evolution on a GAL16V8 chip [95] that is a
particular type of PAL. In particular he evolved 4-bit multiplexers [64] and 3-bit counters
[65].

Adaptive electronic controllers can be evolved in these reconfigurable devices. This
was demonstrated by Kajitani et al. that designed a custom integrated circuit containing
a large PAL with an embedded genetic algorithm. This circuit was used to control an
artificial hand from myoelectric signals [78]. However, since myoelectric signals differ
from one person to another, the electronic controller had to adapt to the user. To achieve
this the PAL was evolved to select the appropriate actions of the hand according to the
input signals, that were the frequency spectrum of the myoelectric signals. The fitness was
proportional to the number of correct associations of input signals to actions. The authors
compared the evolvable hardware controller to an artificial neural network (ANN) and
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showed that classification of input signals was more precise with EHW (85%) than with
an ANN (80%).

In this application, the key difference between EHW and ANN lies in the complexity
(and therefore size in a hardware implementation) of the elementary functional blocks.
Artificial neurons are more complex and take more space than the simple logic gates used
in PALs. The authors pointed out that the EHW chip was better suited than ANN for small
and embedded controllers because of its comparatively small size and quick adaptability.

2.4.3 Unconstrained evolution

FPGAs are reconfigurable devices that allow to implement more complex circuits than
PALs. Unconstrained evolution refers to the evolution of FPGAs by using the configu-
ration string of the FPGA as the genetic string of the evolutionary algorithm. Evolution
is “unconstrained” because the user does not impose a predefined topology on the circuit
that is evolved, nor does he limit evolution to a subset of the available functional blocks.

Since the evolutionary algorithm operates directly on the configuration string of the
FPGA, no such string should damage it (e.g. cause short circuits). Only some FPGA
architectures support unconstrained evolution. The XC6200 family of FPGAs from Xil-
inx is one of those [189]. The XC6200 is organized as an array of programmable cells
with resources for routing between cells. Figure 2.3 represents a simplified view of a
cell. Cells have one output and one input on each side (north, east, south, west). Inside
each cell there is a function unit that can perform a logic function or serve as a memory
element. The inputs of the function unit and the outputs of the cell are selected by mul-
tiplexers. The configuration of all these multiplexers forms the configuration of the cell.
The configuration of an array of cells is obtained by concatenating the configuration bits
of all the cells in the array. The FPGA is organized such that outputs of a cell are always
wired to inputs of adjacent cells. In this way short circuits are impossible, irrespective of
the FPGA configuration.

Unconstrained evolution may allow to find circuits that operate using different princi-
ples than those that are used when designing circuits. This may lead to circuits that are
more efficient than circuits that are designed (e.g. using less components). This was first
demonstrated by Thompson that evolved a circuit capable of discerning between an input
signal oscillating at two different frequencies [165, 166]. This circuit was evolved so that
its output was low when the input signal was oscillating at 1 kHz and high when the input
signal was oscillating at 10 kHz. An array of 10x10 cells in the XC6200 FPGA was used
for this purpose, resulting in a genetic string that was 1800 bits long. The challenge of
this experiment was that no reference clock signal was given to the circuit. Nevertheless,
after 3500 generations the desired circuit was obtained. Figure 2.4 illustrates the output
of the circuit at different generations for the two input signals. Analysis revealed that the
evolved circuit might have used physical characteristics of the chip such as gate propaga-
tion time to discriminate between the two frequencies. In comparison, designing a circuit
for this task would have required an external time reference (e.g. an oscillator).

Thompson showed that circuits obtained by unconstrained evolution adapted to the
physical characteristics of the chip on which they were evolved, and on environmental
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Figure 2.3: The simplified view of a XC6200 cell. The cell has one input and one output
on each side. The function unit implements a logic or a memory element. The inputs of the
function unit and the outputs of the cell are selected by multiplexers.

Figure 2.4: Output of the frequency discriminator at different generations for the 1 kHz and
10 kHz signals. After 3500 generations the input signal is correctly detected and the output is
low with the 1 kHz signal, and high with the 10 kHz signal (from [165]).
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conditions such as the temperature. When the same evolved circuit was implemented
on another chip, or tested at another temperature, the resulting fitness dropped. These
variations are caused by the fact that different chips have slightly different characteristics,
within the tolerance of the manufacturing process. Furthermore many characteristics of
electronic components show a dependency with temperature. Thompson showed how to
cope with these problems by evolving simultaneously several circuits on different chips
and at different temperatures [164].

Unconventional circuits were also obtained by Huelsbergen et al. that successfully
evolved circuits that oscillated at various low frequencies (from 20 kHz to 80 kHz) on
a XC6200 FPGA in a setup similar to that of Thompson [73]. In particular the circuits
did not receive any external time reference. The authors observed that the temperature
influenced the oscillation frequency of the circuits. They suggested that this might be
exploited by evolution to create a temperature feedback loop that might lead to circuits
operating independently of the temperature.

2.5 Analog circuit evolution

Some applications are well suited to analog processing, e.g. filters, oscillators, ampli-
fiers. For these applications, evolving analog circuits may thus be more appropriate than
evolving digital circuits.

Extrinsic evolution can be done using analog circuit simulators such as SPICE (Sim-
ulation Program with Integrated Circuit Emphasis) [91]. In this section we focus on the
intrinsic evolution of analog circuits that is a recent development in EHW. This may come
come from the fact that commercial reconfigurable analog devices were introduced after
their digital counterpart. In the following subsections we will describe the three most
common categories of intrinsic analog evolution, that are the evolution of FPAAs, the
evolution of custom generic reconfigurable boards, and the evolution of custom integrated
circuits.

2.5.1 Field programmable analog arrays

FPAAs are reconfigurable analog devices that can be programmed to implement many
analog functions such as filters, oscillators, comparators, etc. They have the advantage of
integrating several discrete components in one chip. In addition they offer reconfiguration,
that can be exploited to change the characteristics of a circuit without having to replace its
components. FPAAs are generally based on operational amplifiers. Operational amplifiers
are components that amplify analog signals with a high gain and they are the elementary
building blocks of many analog functions.

The configuration string of FPAAs can be evolved in the same way as the configuration
string of digital reconfigurable devices, therefore allowing the evolution of analog circuits.

The Zetex TRAC (Totally Reconfigurable Analog Circuit) is a FPAA composed of 20
operational amplifiers [195]. The inputs of the operational amplifiers can come from an
external pin, or from another operational amplifier in the device. According to the config-
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uration string, passive components of pre-defined values integrated in the device (resis-
tors, capacitors and diodes) are connected to the operational amplifiers. This enables oper-
ational amplifiers to take different functionalities: integrator, differentiator, pass-through,
adder, etc.

Flockton et al. demonstrated the feasibility of intrinsic evolution of analog circuits
on the TRAC. They successfully used a GA to evolve a circuit that matched closely a
predefined input-output transfer function [38]. They also evolved analog bandpass filters
using a set of external resistors [39].

The MPAA020 is another FPAA that was developed originally by Motorola [123] but
that is now owned by Anadigm and sold as the AN10E40 [3]. This FPAA is composed of
20 Configurable Analog Blocks (CAB). Each CAB is composed of an operational ampli-
fier, passive components, and programmable switches that interconnect the components
with the operational amplifiers. Compared to the TRAC, this device offers programmable
passive components (e.g. the value of the integrated resistors is specified by the configu-
ration bits). This is done using a switched capacitor technology: by switching a capacitor
between two terminals at various frequencies, the quantity of charges transferred between
the two terminals can be modulated, thereby simulating resistors of different values.

Zebulum et al. demonstrated that evolution could handle circuits based on switched
capacitor technology by evolving intrinsically an oscillator on the MPAA020 [193]. This
is an important point since switched-capacitor technologies tend to introduce noise in the
signals that may perturb the measurement of the fitness.

2.5.2 Custom generic reconfigurable boards

Commercially available FPAAs impose constraints on the circuits that can be evolved
since these circuits must use the functional blocks provided in the FPAA (e.g. operational
amplifiers), the available passive components, and the interconnections predefined by the
architecture of the FPAA. It is therefore not possible to evolve circuits using other func-
tional blocks, possibly more adapted to a particular application (e.g. transistors instead of
operational amplifiers). Furthermore, in order to understand an evolved circuit it is often
necessary to perform measurements on the internal nodes of the device (i.e. the output of
internal function blocks). This is often not possible in FPAAs.

For these reasons, custom generic reconfigurable boards were developed for the evo-
lution of analog circuits. These boards allow to evolve circuits based on components
provided by the user. Furthermore all the internal nodes are accessible for measurements.

The Evolvable Motherboard (EM) is one of those reconfigurable boards that was de-
veloped for intrinsic hardware evolution (figure 2.5) [96, 97]. The EM is composed of 6
programmable crosspoint switch arrays. Each of these arrays is composed of horizontal
and vertical wires with a programmable switch at each intersection. By programming the
switches, the horizontal and vertical lines are connected. In each array a daughterboards
can be plugged in. Daughterboards allow to connect external components (e.g. resistors,
capacitors, transistors, operational amplifiers) on the signal lines of the array. In the fig-
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Figure 2.5: Simplified representation of the EM. The six programmable crosspoint switch
arrays are visible on the left. On the right three daughterboards are connected to the evolv-
able motherboards to provide external components. In this figure the top two daughterboards
contain transistors while the third one contains operational amplifiers. By evolving the con-
nections between horizontal and vertical lines circuits composed of transistors and operational
amplifiers can be evolved (from [96]).

ure, the top two daughterboards contain NPN and PNP bipolar transistors2, while the third
contains two operational amplifiers.

The genetic string of the circuit is the configuration of all the interconnection switches
(on or off). Hence circuits containing any of the components connected to the evolvable
motherboard via the daughterboards can be evolved. The EM was used to evolve digital
inverters [96], and inverting amplifiers and oscillators [97] from PNP and NPN transistors.

The Programmable Analog Multiplexer Array (PAMA) is another generic reconfig-
urable board [140, 194]. The core of the PAMA is an analog bus of 8 lines. Some of those
lines are used for external signals (input and output signals, ground and power supply) and
the others are used for internal signals. External components are connected to the analog
bus using programmable analog multiplexers. The configuration of the multiplexers indi-
cates to which bus line the pins of external components must be connected. In this way
external components sharing the same bus line are interconnected, or they are connected
to the inputs, outputs or power supply via the corresponding bus lines. The genetic string
of the PAMA is the configuration of all the multiplexers.

Zebulum et al. evolved an inverter by connecting NPN transistors and resistors to the
PAMA [194]. Santini et al. presented an improved version of the PAMA, with an analog
bus of 16 lines [140]. They evolved a XOR gate and a 2 input analog multiplexer from
PNP and NPN transistors and resistors.

In many experiments, both with the EM and the PAMA, several uncommon circuits

2In a very simplified way NPN or PNP indicate whether the transistors conduct current when the input
is low or high.
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Figure 2.6: Illustration of the transistor array of the FPTA. It consists of 8 transistors and 24
programmable switches (from [151]).

were evolved. For instance components sometimes had floating pins. Evolution also ex-
ploited physical characteristics of components in several experiments. This was evidenced
after replacing a component with another one of the same type and noticing a decrease in
the fitness value.

These reconfigurable boards can be easily and cheaply built using commercially avail-
able components and they offer a lot of flexibility. They do however take more space than
FPAAs since discrete components are used.

2.5.3 Custom reconfigurable integrated circuits

Generic reconfigurable boards lack the integration seen in FPAAs but they allow the evo-
lution of circuits with any type of user-defined components. An alternative is to develop
custom reconfigurable integrated circuits that are specifically designed for evolvable hard-
ware. By developing a custom circuit, a high degree of integration can be achieved, and
the circuit can be designed to include all the components required for a particular appli-
cation.

This approach was followed at the NASA Jet Propulsion Laboratory (JPL) where a re-
configurable integrated circuit was developed for evolutionary applications. The resulting
device is referred to as the Field-Programmable Transistor Array (FPTA) [150, 151, 154].

The FPTA is a transistor-level reconfigurable device. Transistors are used to allow
both analog and digital circuit evolution in the same device.

The first generation FPTA consists of an array of 8 transistors (4 NMOS and 4 PMOS)
interconnected with 24 programmable switches [150], as illustrated in figure 2.6. The
switches are in sufficient number to allow many topologies commonly used in circuits.
Larger circuits are obtained by connecting several FPTAs together. Higher level building
blocks can be obtained by freezing the connections between the transistors in a FPTA.
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Therefore, once configured, a single FPTA can serve as a custom function block.
The genetic string of the circuit consists of the configuration of all the switches. The

FPTA was used to evolve circuits having a Gaussian current-voltage response, inverters
[151], NAND gates [153], and T-norm and S-norm gates for fuzzy logic [152]. In some
runs the evolutionary process even rediscovered equivalent human designed circuits.

The second generation FPTA (FPTA2) was developed to handle more complex cir-
cuits. The FPTA2 is composed of 64 arrays of transistors and a transistor array now con-
tains 14 transistors and 44 programmable switches and it includes programmable resistors
and capacitors. The FPTA2 also includes a vision sensor, which makes it an evolvable
sensor system [154].

An approach similar to that of the NASA JPL was followed by Langeheine and others,
using a different FPTA architecture [94].

Evolvable hardware can lead to fault-tolerant circuits. This was demonstrated by
Keymeulen et al. on the FPTA [83]. Two approaches to fault tolerance were consid-
ered. In the first case, when a fault occurred, the FPTA was reconfigured with each of
the circuits obtained in the last generation, until one that happened to perform well with
that fault was found. In the second case faults known to occur were introduced during the
evolutionary process, leading to circuits that were robust to several faults. In both cases
significant fault-tolerance was observed.

Another approach to analog processing consists in using a digital representation of
analog signals. This is the objective of the Palmo system that uses a custom chip ar-
chitecture that processes analog data with a digital pulse-based representation [60]. The
magnitude of a signal is encoded by the width of the digital pulse, and the sign of the
signal is determined by the occurrence of the pulse with respect to a global sign clock.
This digital encoding allows to transmit signals on long distances and it is less sensitive to
noise than analog encodings. The basic computational blocks used in the Palmo system
are cells acting as differential integrators with a programmable scaler. A chip containing
an array of Palmo cells was manufactured and tested with simple circuits (e.g. filters,
Σ-∆ modulators) but evolution was not yet performed.

2.6 Discussion

In the previous sections we showed several examples of novel circuits obtained with EHW.
Some of these circuits are unconventional circuits. They perform the desired functional-
ity in another way than a circuit which is designed would (e.g. some evolved circuits
operate with components that have floating pins). Evolved circuits may exploit physical
characteristics of the substrate on which they are implemented. They may provide adap-
tive hardware, by letting the circuit evolve until it satisfies a desired degree of adaptivity.
Evolved circuits may use less logic gates than their counterparts which are designed.
Eventually evolved circuits may provide tolerance to faults, either by letting the circuit
re-evolve in case of faults, or by subjecting the circuit to faults during evolution.

Miller et al. summarized the results obtained with EHW by suggesting that this ap-
proach could explore a larger set of circuits than what a human designer could. This
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Figure 2.7: The EHW design space may grasp a larger part of the space of all designs than
the human design space, thereby leading to novel or unconventional circuits (from [114]).

potentially allows EHW to discover circuits unknown to engineers or out of reach of tra-
ditional design techniques [114] (figure 2.7).

Indeed evolved circuits need not follow the hierarchical decomposition commonly
found in circuits that are designed. Therefore evolution may find more compact circuits
by eliminating the redundancies that may exist between building blocks used in traditional
designs. Mathematical models of circuits are also used in the design process, and design
rules are followed to stay within the validity range of these models. For instance digital
sequential circuits are designed so that all the signals change synchronized with a global
clock. Unconstrained evolution shows that new circuits can be found when these rules
are removed. In particular FPGAs that are designed for digital synchronous logic may be
used as continuous time recurrent circuits by evolution.

Evolvable hardware however also has some drawbacks. Evolved circuits may lack
understandability and their operational envelopes may be difficult to determine (e.g. the
temperature range in which circuits behave correctly). Therefore evolved circuits may
require extensive testing to ensure correct behavior in all the operating conditions before
they can be used in critical systems.

Furthermore evolution must sometimes proceed for several thousand generations be-
fore the desired circuits are obtained. This is especially the case with unconstrained evo-
lution that tends to generate huge search spaces (genetic strings of several thousand bits).
Such long evolutionary runs may be impractical in applications that require fast evolution,
for instance to recover from faults in real-time.

More importantly EHW seems to encounter an issue of scalability that limits the size
of the circuits that are evolved [191, 182, 82, 79, 59]. The scalability issue is that the
larger circuits become, the increasingly harder it is to evolve them. One of the causes
of this problem may be the direct genetic encodings that are generally used in evolvable
hardware. These encodings assign one gene to each element of the circuit. Therefore the
size of the genetic string grows with the size of the circuit. The size of the search space of
larger circuits thus explodes, and evolutionary search may not find circuits satisfying the
objective function. The following section describes some ways to deal with this aspect.

Another limitation of direct genetic encodings in evolvable hardware is that the geno-
type to phenotype mapping is static. Environmental interactions are not taken into account
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when the genetic string is decoded. Therefore these genetic encodings do not fully take
advantage of the complex dynamics of gene regulation observed in biological organisms,
that might be exploited to provide fault tolerance to the circuit or adaptivity to the envi-
ronment.

2.7 Towards more complex evolved circuits

Different approaches have been proposed to tackle the problem of scalability in EHW and
evolve more complex circuits.

Indirect mappings between the genotype and the phenotype that allow for gene reuse
may be used [190]. Such a mapping may take the form of a developmental system where
the genetic string contains instructions that indicate how to build a larger circuit. This
approach is reviewed in chapter 3. Variable length genetic encodings may also be used.
For instance Higuchi et al. used variable length chromosomes to evolve a PAL and they
observed that they could evolve larger circuits with variable length chromosomes than
with a simpler GA [66].

Incremental evolution may be used to evolve simpler subsets of the target problem.
For instance, instead of evolving a single digital circuit with several outputs, several sub-
circuits with a single output can be evolved [18, 79, 174].

High-level building blocks may also be introduced. These building blocks may be
found by the evolutionary process, such as automatically defined functions in GP [91], or
they can be defined from previously evolved circuits [182]. Predefined high-level blocks
may also be used, such as artificial neurons [47].

In the EHW community simple evolutionary algorithm are often used. However, op-
timized algorithms may be devised to better handle some problems. For instance diploid
genes may improve the adaptation of electronic circuits to changing environments [68],
and algorithms combining genetic algorithms and simulated annealing show promising
results [99].

Since the structure of the fitness landscape may influence the difficulty of evolutionary
search [107], selecting an appropriate genetic encoding and appropriate building blocks
may lead to fitness landscapes that are better suited for evolutionary search. This is not
a trivial issue since characteristics of the fitness landscape sometimes fail to distinguish
between easy and hard problems [147]. However neutrality3 seems to favor the evolution
of digital circuits [181] and genetic encodings that allow for neutrality may be designed
to improve the evolvability of circuits [180]. Analog circuits are also believed to induce
smoother fitness landscapes that may improve evolutionary search [151, 194].

3Neutrality is a characteristic of the fitness landscape that indicates that it is possible to go from one
point of the search space to another one of identical fitness by application of the genetic operators, by
following a path of constant fitness.
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2.8 Summary

In this chapter we reviewed some of the applications of EHW in digital and analog cir-
cuits. We showed that EHW could find more efficient circuits than those obtained by
design, that it could find unconventional circuits by exploiting physical properties of the
hardware, and that it could lead to adaptive or fault-tolerant hardware. Nowadays EHW
also gains support in the industry. For instance it is used to optimize the clock distribution
in high-speed systems, it can be used to compress data in printers, and it allows to adapt
analog filters in cellular phones after manufacturing [67].

Finally we discussed the problem of scalability that limits the size of evolved circuits
and we highlighted some of the approaches that may be followed to tackle this problem. In
this thesis we will follow three of these approaches to develop the evolutionary system for
multi-cellular POEtic circuits in chapter 6. We will use an indirect genotype to phenotype
mapping that allows for gene reuse, we will use predefined high-level building blocks, and
eventually we will use building blocks that can process analog values, since these may
induce smoother fitness landscapes that may improve evolutionary search. In particular
we will work with spiking neurons that transmit information with binary spikes, but that
can encode analog values in the temporal patterns of spikes. Spiking neurons have another
advantage since they may be used as compact neural controllers for robots [43]



3 Developmental systems for
electronic circuits

Abstract

In chapter 2 we reviewed evolvable hardware and we evidenced a problem of scalability
that we linked to the direct genetic encodings that are often used in this field. Since direct
genetic encodings assign one gene to each element of a circuit, the genetic string grows
with the size of the circuit and leads to large search spaces. Developmental systems
may alleviate this problem by providing more efficient indirect genotype to phenotype
mappings. Furthermore the dynamics of development may allow inter-cellular or envi-
ronmental interactions during development that might lead to adaptive or fault-tolerant
electronic circuits. The purpose of this chapter is to review developmental systems used
for evolvable hardware and classify those according to characteristics of their hardware
implementation. Finally we conclude highlighting two points that we will consider to
design the developmental system for multi-cellular POEtic circuits in chapter 6.

3.1 Introduction

Chapter 2 evidenced the problem of scalability that is faced in evolvable hardware, and
linked it to direct genetic encodings that are often used in this field. These encodings
assign one gene to each element of a circuit. Therefore the genetic string grows with the
size of the circuit and leads to large search spaces. Kitano, that reported on the early evo-
lution of neural networks with direct genetic encodings, also noted the issue of scalability,
together with the lack of biological plausibility of these encodings [84]:

There are two major problems in these approaches. First, none of these stud-
ies carried out systematic experiments in terms of scalability and the speed
of convergence, leaving applicability of the schemes for designing larger net-
works open to questions. [...] Second, these methods are biologically un-
feasible, because they assume that connectivity information is encoded in the
DNA in almost one-to-one correspondence. This leads to two major prob-
lems: (1) it cannot capture morphogenesis of neural systems, and (2) suf-
ficient information cannot be encoded in DNA of the given length. Thus,

25
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existing methods do not take full advantage of using genetic algorithms for
neural network designing.

A possible way to ensure better scalability is to use indirect genetic encodings with a
genotype to phenotype mapping that takes the form of a developmental process [85, 190].
Therefore a small number of “instructions” in the genotype may describe how to “grow”
a larger phenotype, thus reducing the size of the search space.

In addition direct genetic encodings do not capture the complex dynamics of develop-
ment mediated by gene expression which is seen in biological organisms. Developmental
systems may allow inter-cellular or environmental interactions during development which
could provide circuits with fault-tolerance or dynamic reorganization capabilities to cope
with environmental changes.

A developmental system may consists of abstract instructions encoding the pheno-
type, it may be biologically inspired, or seek biological plausibility. Such indirect ge-
netic encodings are referred to as embryogenics [85], embryogeny [9], artificial ontogeny
[12, 131], morphogenic evolutionary computation [4], or artificial embryology [23]. We
refer to them simply asdevelopmental systemsto avoid the biological connotation of the
above terms, as several genotype to phenotype mappings may be unrelated with biology.

The purpose of this chapter is to review developmental systems applied to evolvable
hardware and the applications that are the result of such a combination. We also propose
a classification of these developmental systems which is based on characteristics related
to their hardware implementation. This classification evidences one category of develop-
mental systems that we believe is promising for evolvable hardware.

Since biological development is often a source of inspiration to design developmental
systems, the principles of biological development are briefly introduced in section 3.2,
together with some common mathematical abstractions of development in section 3.3.
Developmental systems used for evolvable hardware are reviewed in section 3.4. De-
velopmental systems may also be used to grow neural networks or morphologies, and
an overview is given in section 3.5. A classification of developmental systems used for
evolvable hardware is proposed in section 3.6. Finally section 3.7 concludes this chapter
by highlighting two points that will be considered to design the evolutionary system for
multi-cellular POEtic circuits in chapter 6.

3.2 Biological development

The main concepts of biological development are summarized here. A full treatment of
this topic may be found in [19, 188].

The development of a multi-cellular organism follows the following stages:

1. Fertilization is the process by which the genetic material of a sperm cell and an
egg cell are merged to create the embryo. Fertilization initiates the development
process.

2. Cleavage consists in rapid cell division starting from the fertilized egg. During
cleavage the total size of all the cells remains the same (figure 3.1). After about
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Figure 3.1: Illustration of the process of cleavage by which cells undergo division but the
total size of the cells remains identical.

10 divisions some changes start to appear and three regions can be identified: the
mesoderm which will give the muscles and bones, the ectoderm which will form
the nervous system and the endoderm which will become the gut.

3. During pattern formation the major body axes are defined, such as the anterior and
posterior ends and the dorsal and ventral sides. Initial asymmetries in the egg may
be used to establish those body axes.

4. Gastrulation consists in the movement of sheets of cells. The mesoderm, ectoderm
and endoderm are rearranged; this leads to a change in form of the organism, also
called morphogenesis.

5. Cell differentiation then occurs: cells become structurally and functionally differ-
ent, e.g. muscle cells, skin cells.

6. Growth occurs after the form of the embryo is defined in a small scale. The size
of the organism increases either by cell multiplication, cell growth, or deposition of
external material (e.g. bones).

The development process is controlled by the genes which are encoded in the DNA
of every cell. Genes contain all the “instructions” necessary to build proteins. Some
of those proteins are necessary for the life of the cell (e.g. to break down molecules to
produce energy). Some are used to implement cell-specific functionalities (e.g. transport
of oxygen by blood cells). Eventually some control development.

However genes are not always interpreted or expressed, and the corresponding protein
is not always produced. When a gene is interpreted it is said to be activated, and when it
is not the gene is said to be repressed. The degree of expression of a gene is regulated by
transcription factorsthat are specific proteins regulating the expression of genes. Those
transcription factors are themselves the product of other genes. Therefore complex dy-
namic patterns of gene activation and repression arise in cells. This is referred to asgene
regulatory networks(GRNs).

The expression of a gene is controlled by a part of it which is called thecontrol region,
whereas the instructions necessary to build proteins are in thecoding region, as illustrated
in figure 3.2. The control region, also called the regulatory region, containsenhancer
regionsto which the transcription factors can bind to activate or repress the transcription



28 DEVELOPMENTAL SYSTEMS FOR ELECTRONIC CIRCUITS

DNA

Control region Coding region

Transcription

Translation

Protein

mRNA

Promoter Enhancer regions Introns

Figure 3.2: Structure of a gene and the process of production of proteins. Genes are com-
posed of a control region and a coding region. The coding region contains the instructions
necessary to build a protein. The control region contains several docking sites, called the
enhancer regions, where transcription factors (proteins) can attach to activate or repress the
transcription of the gene. Gene expression starts at the promoter region if the correct tran-
scription factors are present. During the process of transcription the non-coding parts called
introns are removed and messenger RNA is synthesized which is then translated into proteins.

of the gene. There can be several enhancer region and therefore complex arrangement of
transcription factors may be necessary to activate the gene.

Gene expression starts from a region called the promoter region. A special molecule
called RNA polymerase docks on this region. If the correct transcription factors are
present it unwinds the DNA, interprets the gene and synthesizes the corresponding mRNA
(messenger RNA). Therefore when a gene is activated production of mRNA follows. This
phase is called transcription. During transcription, the non-coding parts of the gene called
introns are removed. The mRNA is then translated into a protein that eventually folds in
a 3D shape.

Genes control the development of organisms through the proteins they produce. Dif-
ferent patterns of gene expression lead to cell differentiation, to changes in cell shape or
to cell movements which cause morphogenesis. Cell division and programmed cell death
(apoptosis) are also under the control of genes.

Gene expression can be affected by external factors, for example environmental
changes, but also by signals coming from other cells. The process by which a signal
from a cell influences the development of another one is calledinduction. Inductive sig-
nals may be chemicals diffusing among cells on long distances or they may be molecules
exchanged locally on the surface of cells which are in contact. Only cells which are in an
appropriate state respond to inductive signals.

Positional information can also lead to specific patterns of gene expression. This is
an important step during pattern formation. Positional information can be conveyed by
the intensity of a chemical which varies in space. Such a chemical may come from the
initially asymmetric distribution of yolk in the egg. When a chemical is conveying such a
positional information it is called amorphogen.
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T T+1
I1 I0 O
0 0 0
0 1 0
1 0 1
1 1 0

Table 3.1: This truth table represents the new state of a gene (O) at the next time step (time
T+1) in function of the current (time T) state of the genes that control its expression (I0 and
I1).

3.3 Mathematical models of biological development

Even though the biological mechanisms of development are rather complex, there are
simple mathematical abstractions that can describe some aspects of development.

3.3.1 Random boolean networks

Random boolean networks (RBNs) were proposed by Kauffman to study the hypothesis
that organisms may be randomly constructed molecular automata [81]. To this end he
developed a mathematical simplification of the dynamics of gene regulation where genes
are considered as binary: either fully activated or repressed.

A RBN is a collection of genes which are updated (activated or repressed) in discrete
time steps. The state of a gene is updated in function of the state of other genes that control
its expression. This may be represented by a truth table, as in table 3.1, that represents the
new state of the gene (i.e. whether the gene will be activated or repressed in the next time
step) in function of the state of the genes that control its expression.

Kauffman considered genes that have an identical number of inputsK. RBN genes
are “random” in the sense that the inputs of genes are randomly selected amongN genes
in the network. Also, the truth table of every gene is different and randomly selected
among the22K possible truth tables. Kauffman showed that RBNs can exhibit stable
cycles (point attractors or cycle attractors) that may be identified to a cell type, that the
number of distinguishable cycles can predict the number of cell types in an organism with
a similarly sized genetic network, and that RBN can change operating mode (cycles) like
cells do differentiate.

Since their inception other types of RBNs have been proposed, e.g. with asynchronous
or non-deterministic update. See [48] for a recent classification of RBNs. More realistic
models of gene regulations consider genes that have different degree of expression. These
models are referred to as gene regulatory networks (GRNs).

3.3.2 L-Systems

L-Systems are mathematical models proposed by Lindenmayer to describe the develop-
ment of multi-cellular organisms [100]. Cells have a state, an input and an output. The cell
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is considered as a sequential machine which changes state in function of its inputs and its
current state. The outputs also depend on the current cell state and inputs. Lindenmayer
describes the next state of a cell as a generating functionδ:

δ(p, q) = r.

In the notationp andq represent the current state and input of the cell andr is the new
state. The output of the cell is represented by:

λ(p, q) = u

with the same notation as above,u representing the output of the cell. Until now this
description is similar to a Mealy machine in electrical engineering. The difference comes
from the fact that cell-division can be represented by having a sequence of two or more
states as the output of the generating functionδ. For example the generating function

δ(a, 1) = ab

replaces the statea by statesa andb when the input is 1, thereby increasing the length of
the organism.

L-Systems can also be seen as a formal grammar that consists of symbols, rewriting or
production rules and a start symbol. Rewriting rules have a left-hand side and a right-hand
side consisting of a string of such symbols (or words):

LHS → RHS.

Rewriting rule are applied to strings or words by replacing the left-hand side by the right-
hand side. This process begins from the starting symbol.

For example consider the system composed of the following rewriting rules:

S → AB

A → AB

B → b

Starting from the symbolS, it gives the following developmental steps:
Step 0: S
Step 1: AB
Step 2: ABb
Step 3: ABbb

L-Systems have been used to model plant growth. Consider the following rewriting
rules:

S → F

F → F [LF ][RF ]

whereF draws a segment of line in the current direction,L andR change the drawing
direction to the left or right and[ and ] memorize and restore the current position and
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Figure 3.3: Illustration of plant-like structures which can be developed using L-Systems.

drawing direction. Figure 3.3 illustrates the structure which is obtained after three appli-
cations of this rewriting rules.

Variants of L-Systems include parametric L-Systems where parameters can be asso-
ciated with symbols and used in the rewriting rules. L-Systems are context-free when the
rewriting rules depend on a single symbol. When they depend on several symbols the
L-System is context-sensitive.

3.3.3 Other models of development

Turing proposed a model based on reaction-diffusion equations that generate patterns sim-
ilar to some that are observed in nature. This model is known as Turing’s morphogenesis
[177]. For instance reaction-diffusion equations can generate patterns similar to those
observed on animal coat [124]. Since Turing’s morphogenesis, more complex systems of
differential equations have been proposed to model the process of gene regulation [17].
Until now reaction-diffusion models have not been used in evolvable hardware and for
this reason this approach is not described in more details here.

Real interactions among genes are more complex than the idealization of RBNs or L-
Systems or simple reaction-diffusion equations. For this reason a number of researchers
focused on more realistic models. For instance Kitano et al. developed a virtual biol-
ogy laboratory that consists of a detailed computer simulation model of major biological
systems [86]. The recent models of gene regulation have been reviewed by Reil [132].

3.4 Developmental systems in evolvable hardware

Developmental systems implemented in hardware often mimic the multi-cellular nature
of biological organisms, resulting in multi-cellular circuits that differentiate under the
control of the developmental system.

The fitness of the circuit is evaluated after its development from the genetic string.
When the developmental process is deterministic a single circuit evaluation is required
to determine its fitness. If development is not deterministic, for instance because the
environment can influence development, the circuit needs to be developed and evaluated
several times, possibly in different environmental conditions, in order to have an accurate
measure of the fitness.
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Developmental systems used for evolvable hardware can be loosely grouped in four
categories: those using gene regulatory networks to model circuit growth, those using
more general cell programs, those using L-Systems, and eventually those using abstract
representations of circuits. In an additional fifth category we describe a particular devel-
opmental system that uses a direct genotype to phenotype mapping and provides multi-
cellular “Embryonics” circuits with fault-tolerance.

3.4.1 Gene regulatory networks

Gordon et al. explored a model of biological development for the evolution of electronic
circuits, which is akin to a minimalistic gene regulatory network with binary protein con-
centrations in a locally interconnected 2D array of cells [53]. Cells are composed of 4
inputs, a functional part implemented by a 4-input look-up table (LUT) and one output.
Development is based on rules that have preconditions and postconditions. Preconditions
indicate which proteins must be present or absent in the cell for the postcondition to oc-
cur. Postconditions can either generate proteins or change the functionality of cells. The
functionality of a cell is modified by changing its input and output connectivity, or by
modifying its LUT. Since proteins have binary concentrations, protein diffusion and de-
cay is not modeled in this system. Development rules are executed in software but the
functional part of the cells is implemented in a Xilinx Virtex FPGA. Unconstrained evo-
lution was performed to evolve a two bit adder with carry. While the evolvability of the
system was worse than a direct encoding (lower maximum fitness at the end of the runs),
more regular and repeatable structures appeared in the content of the look-up tables. The
authors argued that this is a key point of developmental systems and they suggested that
evolving larger adders would become easier since they can be implemented with very reg-
ular structures such as the ripple carry adder. The authors afterwards reduced the size of
the search space to try to improve the evolvability by reducing the number of rules used
to modify the content of the LUTs. Although the results were less good in terms of fit-
ness than with the previous encoding, the authors noticed that the content of the evolved
LUTs corresponded to simpler circuits that translated into more gate-efficient solutions
when implemented using discrete components. Eventually the model was enriched by
introducing diffusion and a finer detection of protein concentrations in neighboring cells.
The 2-bit adder could be evolved with this new developmental model when the genetic
algorithm was replaced by a hill-climbing algorithm [52].

Gene regulatory networks that have continuous protein concentrations may allow for
more complex dynamics in the developmental process. This approach was followed by
Koopman et al. that developed a simplified gene regulatory system with continuous pro-
tein concentrations that is suited for hardware implementation [88]. Each cell contains a
gene regulatory network that interprets an artificial genome containing the rules of acti-
vation or repression of genes, in function of the existing proteins in the cell. The model
includes protein decay (modeling the half-life of proteins) and protein diffusion across
neighboring cells. The authors used fixed-point bit-serial arithmetic and encoded the pa-
rameters with a minimal number of bits to achieve compact hardware implementation.
The system was partially implemented in the POEtic chip with 200 molecules per cells
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(see chapter 4 for a description of this chip). The system was used to evolve circular
multi-cellular structures of predefined sizes. In particular the authors showed that the dy-
namics of the developmental system provided tolerance to diverse kind of faults to the
multi-cellular structures.

Simulations of gene regulatory networks may also be used to understand the complex
regulatory pathways in organisms, for example to design drugs. Tagkopoulos et al. ex-
ploited the analogies between CMOS circuits and GRNs to implement efficiently these
networks in a custom analog integrated circuit [156]. While the authors focused on bi-
ological applications, the circuit they developed is a reconfigurable device that could be
used in evolvable hardware, with the advantages of compactness and high speed of the
analog implementation.

3.4.2 Cell programs

Gene regulatory networks act as programs within the cells. However these cell programs
need not necessarily mimic genes and proteins; they can be more general programs.

Developmental Cartesian Genetic Programming (DCGP) is a developmental system
proposed by Miller where cells implement both a functional part and a developmental part
in the form of a cell program [116]. The functional part corresponds e.g. to logic gates.
The developmental program of the cell takes as inputs the connectivity, functionality and
position of the cell in the circuit, and it controls the new connectivity and functionality of
the cell, and whether it duplicates in the next developmental step. Figure 3.4 illustrates the
program of a DCGP cell that has two functional inputs (A and B, e.g. a two-input logic
gate). Development starts from a single initial cell and all the cells of an organism share
the same developmental program. The developmental program is encoded with Cartesian
genetic programming (see chapter 2) and is evolved. Miller used DCGP to evolve binary
adders and even-parity functions. He showed that development could sometimes provide
a moderate degree of generalization: by increasing the number of developmental steps he
obtained a logic function of one additional input. He however remarked that the DCGP
genotypes were less evolvable than direct encodings, and that improving the scalability
of evolvable hardware may be a more complex issue than simply looking for a way of
reducing the genotype length.

Miller modified DCGP to use internal and external variables, akin to chemical concen-
trations, instead of the absolute position of cells in the circuit. The cell program now maps
input conditions (chemical concentration and type of the cell and of its immediate neigh-
bors) to output behaviors: production of chemicals, change of the cell type, cell death
or growth of a new cell (duplication) [117]. The evolved cell program is also encoded
using Cartesian Genetic Programming. Miller used this system to evolve organisms with
specific patterns of colored cells (e.g. a French flag). He showed that the system could
adapt to the environment: external environmental signals could control the color of cells
obtained after development. He also demonstrated that the system was capable of self-
repair: after removing cells, the developmental process could recover the initial pattern of
differentiated cells. This system was implemented in software, however hardware imple-
mentation and its use in applications requiring self-repair and adaptation are under-way
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Figure 3.4: Illustration of the cell program in Developmental Cartesian Genetic Program-
ming. Inputs of the developmental program are, on the left, the connectivity of the inputs,
the current function of the cell and its position in the circuit. The developmental program
outputs, on the right, the new connectivity and function of the cell for the next developmental
step, and whether the cell duplicates (i.e. when Duplication is 1 the cell duplicates). Boxes
inside the DCGP cell represent the building blocks composing the developmental program
which governs the cell behavior.

[101].
De Garis considered the evolution of large-scale neural networks in a cellular-

automaton (CA) executed in a custom hardware architecture designed for high-speed CA
simulation [24]. The neural connections are grown according to an evolved program that
is executed in a fully distributed way by the CA. During development, growth signals
are sent along synaptic connections. When they reach the extremity of connections they
induce growth, possibly altering the synaptic direction or creating branchings. Whenever
a synapse reaches another one or a neuron, a connection is established. The neural archi-
tecture is evolved by genetically encoding the sequence of growth signals. De Garis used
this system to produce waveforms of arbitrary shapes, to halve the frequency of an input
signal, to solve the XOR problem, to detect a moving line and to detect a frequency or
signal strength [25].

3.4.3 L-Systems

Since simulating genetic regulatory networks or cell programs may be computationally
intensive, or take a lot of space in hardware, more abstract developmental systems such
as L-Systems may be used.

Haddow and Tufte explored an indirect genetic encoding based on L-Systems to ad-
dress the scalability issue of evolvable hardware. This system is used to evolve electronic
circuits on a custom “virtual” FPGA [57]. The virtual FPGA has the features deemed nec-
essary for unconstrained evolution [56]. It does not exist as a custom chip, but is imple-
mented over a Xilinx Virtex FPGA. Two types of L-System rules are used. Change rules
replace a part of the configuration string with another one of equivalent length. Growth
rules are used to allocate new logic elements (calleds-blocksin the virtual FPGA termi-
nology) on free space around the s-block that triggered the rule. The starting axioms and
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development rules are evolved using a standard genetic algorithm. The system was used
to evolve circuits with specific distribution of s-blocks on a 16x16 cell array with moder-
ate success [58]. Subsequent work considered the restriction of s-block configuration to
specific s-block types to help evolution find specific kinds of circuits, and L-System rules
were extended to be contextual and to control cell death [176]. Applications included
the growth of structures from a single starting cell (achieving a specific circuit size with
a limited number of developmental steps), the differentiation of cells (a number of dif-
ferent cell types had to be present after the developmental process) and the formation of
patterns. In the last case, a symmetrical pattern of cells had to be found within a limited
number of developmental steps. These circuits however did not implement a real func-
tionality and were of limited size: 3x3 s-blocks for the growth and differentiation task, and
4x4 s-blocks for the pattern formation. The developmental mechanism is implemented in
hardware on a dedicated processor [175] and the genetic algorithm is executed in software
on a standard desktop computer.

3.4.4 Abstract representations

Even simpler models of development can be used, that do not necessarily use a multi-
cellular approach to development.

Circuits represented in a Hardware Description Language (HDL) can be evolved by a
developmental process consisting of rewriting rules following a HDL grammar, evolved
by “production” genetic algorithms [119]. Rewriting is controlled by a tree-structured
chromosome where each node contains a production rule that is recursively applied to a
starting symbol. In addition to selection, mutation and crossover, specific operators were
designed for evolution: duplication copies a functional block within an individual, inser-
tion copies a functional block from another individual, and deletion removes functional
blocks. Since HDLs can represent high level building blocks (registers, arithmetic opera-
tors), this genetic encoding is usually more compact than a direct representation of all the
logic gates of a circuit. Evolved HDL circuits are simulated to evaluate their fitness. This
approach was used to generate controllers for artificial ants that had to follow a possibly
interrupted food trail. The authors suggested that this approach might exploit regularities
in the phenotype and therefore that it might be scalable to more complex problems [63].

Koza et al. showed that genetic programming could be used to evolve electronic cir-
cuits [89]. The process by which the tree-representation of the circuit that is used in
genetic programming is decoded into a circuit may be seen as a simple type of develop-
mental system. Koza et al. showed that genetic programming could be enhanced with
automatically defined functions to provide modularity and reuse of structures [90, 91].
This method was successfully applied to design low-pass filters, two-band crossover fil-
ters, amplifiers, etc. [92].

Lohn et al. explored a linear representation of analog circuits that is decoded with
a “circuit construction robot” [102, 103]. The genetic string consists of a sequence of
bytecodes that are executed sequentially. Each bytecode indicates which new element
to add to the circuit (e.g. resistor, capacitor, transistor), its value, and how to intercon-
nect it. The authors noted that this encoding generated many topologies which are seen
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in hand-designed circuits, even though not all the topologies could be represented. The
authors successfully evolved analog filters and transistor-based amplifiers using this rep-
resentation. This approach does use a direct genetic encoding (the number of bytecodes
is equal to the number of elements in the circuit), but since it relies on an encoded growth
program, it may be considered as a relatively simple developmental system.

Mattiussi et al. proposed a genetic encoding that can be decoded even after major re-
organization by genetic operators, and at the same time that allows for gradual changes of
the phenotype under certain genetic operators [111]. The genetic encoding consists of a
string out of which the components, component values (e.g. capacitor values) and termi-
nal interconnections are decoded by a process of string matching. The decoding process
looks for predefined substrings that identify components. Once a substring is found, the
genetic string is scanned from this point onwards to extract the substring corresponding
to the component value (if any) and substrings that identify the terminals of the compo-
nent (terminal labels). Those substrings are delimited by predefined tags. If the necessary
information (component value and terminal labels) are not found before encountering a
substring representing a new component, then the component is not instantiated. Inter-
connections among component terminals are implemented by resistors whose values are
inversely proportional to the degree of similarity among the strings identifying the termi-
nals. The authors used this system to evolve analog circuits such as voltage references,
but they noted that this genetic encoding is also suited for the evolution of other “analog
networks”, such as neural networks or gene regulatory networks.

3.4.5 Embryonics

Embryonics (Embryological Electronics) is a custom reconfigurable device that provides
self-repair and self-replication capabilities to multi-cellular electronic circuits [108, 109,
110]. This is achieved with a developmental system that, contrarily to most of those
shown earlier, uses a direct genotype to phenotype mapping.

Circuits (or organisms) are implemented in Embryonics in the form of a rectangular
array of cells. These cells are structurally identical and execute the same program, which
is considered as the genetic code of the organism. The cell program is hand-coded. This
program is however parameterized: depending on the coordinates of the cell in the organ-
ism different execution paths are followed. The developmental process of Embryonics
organisms is thus a coordinate-based differentiation. Initially all the cells are undiffer-
entiated. Logic within the cells establishes a X;Y coordinate system. As the program in
the cells executes, the cells take the functionality corresponding to their coordinates. As
the cells all contain the complete genetic description of the organism (the cell program),
mechanisms such as self-reproduction and self-repair are possible.

Self-repair is implemented by detecting faults in cells by functional redundency and
deactivating the faulty cells. At this stage the developmental process is restarted, but the
coordinate system is modified so that faulty cells are not numbered (i.e. faulty cells are not
included in the coordinate system). As a consequence, faulty cells are not used, and spare
cells are used instead to implement the circuit. In case of faults, Embryonics development
always leads to circuits functionning exactly like the orgininal circuits, as long as spare
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cells are available in the circuit.

3.5 Other applications of developmental systems

Developmental systems are also used to evolve neural networks. Kitano proposed a graph
generation system inspired upon L-Systems to generate the connection matrix of neural
networks [84]. L-Systems were also used by Vaario [179], and by Boers and Kuiper
to develop modular neural networks [10]. Gruau developed a language controlling the
growth of neural networks called cellular encoding that allows to evolve modular neural
networks [54]. He showed that cellular encoding could automatically find small neural ar-
chitectures that solve the pole-balancing problem, whereas with a direct encoding several
architecture had to be tried manually before finding a proper one [55]. Luke and Spector
proposed an alternative to Gruau’s cellular encoding which they call edge encoding [104].
Eggenberger proposed a biologically inspired model of development that uses a gene reg-
ulatory network to create neural networks in 3D space [31, 32]. Jakobi presented another
biologically inspired genetic encoding for the evolution of neural controllers for robots
[76]. Nolfi et al. evolved neural networks whose connections resulted from an axonal
growth process [125]. Boshy and Ruppin developed a self-organized compact encoding
that they used to find compact neural controllers without any selective pressure towards
small size [13]. Astor and Adami used an artificial chemistry to grow neural networks.
Genomes were hand designed to exhibit some biological behaviors [5]. Federici proposed
a developmental model to evolve neural controllers for robotic applications where each
cell executes a program encoded in the form of a neural network that controls the growth
and differentiation of cells [35]. Quick did not evolve neural networks but exploited the
dynamic nature of GRNs to control robot behaviors by coupling sensory information and
motor commands to proteins within cells [129].

Developmental systems can also be used to evolve structures or robot morphologies.
Sims evolved the morphology and controller of 3D creatures in a simulated physical
world. A directed graph represents how to build the morphology and control system:
nodes correspond to rigid parts of the creature and they encompass functional blocks that
control the forces applied on the joints based on sensory readings [145]. Dellaert and
Beer proposed a biologically defensible model of development based on random Boolean
networks, and they used it to co-evolve the body and control system of autonomous agents
[27, 28]. Agarwal developed a cell programming language that mimics the life of biolog-
ical cells [1]. Eggenberger used differential gene expression to grow the morphology of
3D organisms [33]. This work was carried on by Bongard et al. [11, 12]. Hornby and Pol-
lack used L-Systems to generate moving virtual creatures [71]. Symbols of the L-System
correspond to construction commands and the controller consists of oscillators placed at
the joints of the creature. They used the same developmental system to evolve structures
(e.g. tables) and they obtained higher fitness and faster than with a direct genetic encod-
ing [72]. Kumar and Bentley developed an evolutionary developmental system based on
gene regulatory networks that they used to evolve simple spherical 3D shapes [93]. They
also compared different type of developmental systems to evolve patterns and showed that
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Figure 3.5: Classification of developmental systems used in evolvable hardware. We distin-
guish between developmental systems executed in software or hardware. For those executed
in hardware, their implementation can be either centralized (e.g. in a dedicated coprocessor)
or distributed or cellular. In the last case environmental or cellular interactions may continu-
ously influence the developmental process, in which case development is online. On the other
hand development may be executed only once to obtain the phenotype and development is
offline.

they could provide significant advantages compared to direct genetic encodings [9].
Developmental systems are further reviewed in [4, 87, 148].

3.6 Classification of developmental systems

To classify developmental systems that are employed in evolvable hardware, we consider
key characteristics of their hardware implementation (figure 3.5).

Inspired from the difference between intrinsic and extrinsic evolution in evolvable
hardware [24], that distinguishes the physical implementation of an evolved circuit from
its simulation, we want to distinguish similarly between the execution of the develop-
mental system in software or in hardware. Byextrinsic developmental systemwe mean
that the developmental mechanism is executed in software on a desktop computer. The
resulting circuit is then implemented physically or simulated. Byintrinsic developmental
systemwe mean that the developmental system is implemented in the same hardware as
the circuit that is evolved (e.g. the same chip).

In the case of an intrinsic developmental system we wish to distinguish between a
centralized implementationor adistributed or cellular implementation. In a centralized
implementation a single hardware unit is in charge of running the developmental mech-
anism in the same hardware as the evolved circuit. This can be a CPU or a dedicated
coprocessor located on the same device as the circuit that is grown. In a distributed ap-
proach the developmental system is executed by many independent but communicating
units. Each of these units may be seen like a cell, that implements the developmental
process in addition to its normal functionality. Cellular implementations may be faster,
more scalable, more biologically plausible, and possibly more robust than centralized
implementations, at the expense of more space.
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Finally in online developmentthe developmental process is running continuously to
decode the genotype into the phenotype. Development may thus react to inter-cellular
or environmental signals while the circuit operates. This may allow for characteristics
that are seen in living organisms such as self-repair or adaptation. Inoffline development
the developmental process decodes the genotype into the phenotype in one step. Once
the phenotype is obtained the developmental process stops. Although this is biologically
less plausible, this may save hardware resources when implementing the developmental
system.

In this review most developmental models are extrinsic [52, 63, 89, 92, 88, 111, 116,
117] and few are intrinsic [25, 109, 156, 175].

Among the intrinsic developmental models, one is modeling biological gene regu-
latory networks in hardware but does not have the objective to develop circuits [156].
Embryonics is also an intrinsic developmental system, however circuits are hand-coded
and not evolved [109]. To the author’s knowledge, at the time of writing the only re-
maining intrinsic evolutionary developmental systems are the CA-based growth of neural
networks of De Garis et al. [25] and the L-System-based encoding of Haddow and Tufte
[175]. The former uses a cellular implementation of the developmental system, while the
latter uses a centralized implementation.

All the developmental systems in this review operate offline, with the exception of
Miller’s cellular program which showed that online development could lead to fault tol-
erant and adaptive development [117], and Embryonics development that allows self-
repairing electronic circuits [109].

3.7 Summary

In this chapter we reviewed developmental systems used in evolvable hardware. These
systems provide an indirect genotype to phenotype mapping that may improve the scala-
bility of evolvable hardware to larger circuits. The dynamics of the developmental process
may also provide adaptivity and fault-tolerance that is often seen in biological organism
[109, 117].

There seem to be two approaches to developmental systems. On the one hand support-
ers of biologically plausible models of development claim that scalability and evolvability
can only be improved in this way [93]. However mimicking biology tends to lead to com-
plex developmental systems [31, 32, 93]. Biological realism is further limited by our
still partial understanding of biological development [187] and the trade-offs between bi-
ological plausibility and implementation constraints (e.g. limited silicon resources) and
evolutionary needs (e.g. fast evaluation of many candidate solutions). Furthermore, this
review shows that circuits evolved with the more biologically plausible developmental
systems (e.g. gene regulatory networks, cell programs or L-Systems) are still rather sim-
ple (e.g. simple arithmetic functions or predefined non-functional structures of cells). On
the other hand there are developmental systems that are abstract decoding of the geno-
type. These may be inspired by biology, but do not seek biological plausibility. This
second approach is a more pragmatic view of development [158], yet it seems to work
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for several problems. For instance genetic programming allows to evolve complex analog
circuits with modularity and reuse of structures [90, 91], even though it is far from being
biologically plausible.

We classified developmental systems according to characteristics of their hardware
implementations. We have seen that there are few intrinsic, online and cellular devel-
opmental systems, even though this is where we believe most of the benefits of devel-
opmental systems lie. Intrinsic development means fast genotype to phenotype mapping
and close interaction of the developing circuit with its environment. Together with online
development this may allow adaptation to the environment and fault-tolerance. Finally
cellular implementations may be more robust than centralized ones and are more scal-
able.

In summary we draw two points from this review, that we will consider in the develop-
mental system for multi-cellular POEtic circuits. The first one is that we should consider
intrinsic, cellular and online developmental systems. The second it that we should not
overly focus on biologically plausible developmental systems, since these may lead to
complex systems that take a lot of space in hardware and furthermore they do not yet
seem to allow the evolution of more complex circuits than simpler developmental sys-
tems. This does not preclude biology as a source of inspiration, but we will consider
simpler models of development that may better accomodate implementation constraints
such as silicon area and computational time.



4 Multi-cellular architecture for
bio-inspired hardware

Abstract

In the previous chapters we described how evolution may be used to create electronic
circuits, and how a genotype to phenotype mapping based on a developmental system
may provide better scalability to evolvable hardware, or lead to adaptive or fault-tolerant
circuits. In this chapter we describe a multi-cellular architecture that allows a flexible
integration of evolution, development and, as will be shown in later chapters, learning
mechanisms. We explain how this architecture is translated in hardware to give POEtic
circuits capable of evolution, development and learning. Finally we describe a reconfig-
urable device called the POEtic chip, that is ideally suited to implement this architecture
in hardware. The mechanisms of evolution, development or learning are not considered
here but in subsequent chapters.

4.1 Introduction

In introduction we took the stance that bio-inspired hardware should encompass evolu-
tion, development and learning to fully benefit from bio-inspiration. Circuits capable of
evolution, development and learning are referred to asPOEtic circuits. POE stands for
Phylogeny, Ontogeny and Epigenesis, which are respectively evolution, development and
learning [178].

We argued that to fully benefit from the potential of these circuits a novel evolution-
ary system that combines a genetic encoding and a developmental system needs to be
designed. Such an evolutionary system may allow to capture the complex mechanisms of
development mediated by gene regulation that are seen in biological organisms, and this
may improve the scalability of evolvable hardware, or lead to adaptive development or
fault-tolerant circuits.

In order to design this evolutionary system, an architecture which allows the integra-
tion of mechanisms of evolution, development and also learning must be defined.

Therefore, the first objective of this chapter is to show an architecture that allows a
flexible combination of evolution, development, and also learning. The architecture does
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not specify which are the evolutionary, developmental and learning mechanisms (this is
done in later chapters), but it specifies the overall structure of the POEtic circuits and how
these mechanisms interact with each other.

This architecture describes only the “concept” of a circuit. It needs to be physically
implemented to translate in a POEtic circuit. The second objective of this chapter is to
explain how this architecture can be implemented in hardware. Since POEtic circuits may
be used in various applications (in this thesis we consider different applications in mobile
robotics, but also pattern recognition), the architecture is best implemented in a reconfig-
urable device (i.e. a chip that can be programmed or configured to implement electronic
circuits). This chapter thus explains how reconfigurable devices can be programmed with
this architecture.

Finally this chapter describes one particular reconfigurable device which is ideally
suited to implement POEtic circuits because it has specific features to support the im-
plementation of bio-inspired mechanisms in hardware. This device is called thePOEtic
chip.

This chapter is organized as follows. In section 4.2 we describe the architecture that
allows to integrate evolution, development and learning mechanisms. In section 4.3 we
describe how this architecture is translated in hardware. In section 4.4 we describe the
reconfigurable POEtic chip than can be configured to implement POEtic circuits following
the architecture introduced earlier. Section 4.5 concludes this chapter.

4.2 Multi-cellular architecture

Combining evolution, development and learning in electronic circuits requires an archi-
tecture that can accommodate these mechanisms, yet provides flexibility to allow different
mechanisms to be used depending on the applications of the circuits (e.g. different learn-
ing mechanisms may be envisaged depending on the application).

In this thesis we want to evolve electronic circuits with an evolutionary system that
combines a genetic encoding and a developmental system in order to allow complex in-
direct genotype to phenotype mappings. The developmental system that we consider in
this thesis (described later in chapter 6) is inspired by the mechanisms of growth and
differentiation of multi-cellular biological organisms.

For this reason, to accommodate development, the architecture that we consider to
integrate evolution, development and learning is amulti-cellular architecture composed
of a regular 2D array ofcells.1

In order for a cell to perform a function in the circuit, it must contain afunctionalpart.
The function can be a simple logic gate or a more complex function like a neuron.

The function that a cell takes in the circuit depends of the genetic code of the circuit,
and of the genotype to phenotype mapping mechanism (i.e. the developmental system)

1In principle POEtic circuits could exploit other cell topologies (e.g. irregular structures of cells). How-
ever, irregular cell structures may require more complex evolution, development and learning mechanisms
that take more space in hardware. We assume regular 2D structures of cells in order to minimize the hard-
ware resources required for these mechanisms.
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Figure 4.1: Three-layered architecture of a cell. The genotype layer is a memory storing
the genetic code of the entire circuit. The mapping layer reads and decodes the relevant
part of the genetic string, for instance using inter-cellular signaling and differentiation rules.
The mapping layer then indicates the functionality that must be expressed in the phenotype
layer. The phenotype layer can implement any of the functionalities that may be present in the
circuit. Inter-cellular communication occurs on the phenotype level (e.g. the interconnections
of a neural network) but it can also occur on the mapping layer, for instance to exchange
signals controlling the differentiation of cells.

that controls the differentiation of cells. The cell must therefore contain thegenetic code
of the circuit. The genetic code may also be transferred from a cell to another one during
the operation of the circuit to allow the growth of the multi-cellular circuit from a single
initial cell.

Finally, thegenotype to phenotype mappingmechanism, or developmental system,
that interprets the genetic code of the circuit and provides the functionality of cells must
also be included in the cell.

These three parts of the cell may be represented by three different layers within the
cell: a genotype, a mapping, and a phenotype layer (figure 4.1) [178]. The genotype layer
is a memory that contains the genetic code of the entire circuit. The mapping layer imple-
ments the developmental system. It maps the genotype into the phenotype by interpreting
the relevant parts of the genetic string, and it indicates the functionality that the phenotype
layer must take. For this purpose the mapping layer can access the genetic string in the
genotype layer. The phenotype layer implements the functional part of the circuit, for
instance a logic gate or a neuron, according to the result of the development mechanism.

From the communication point of view there is bidirectional communication between
cells, and inter-cellular communication is possible in all three layers. The phenotype
layer may use it to exchange functional signals between neighboring cells (e.g. between
neurons), and the genotype to phenotype mapping may depend on signals exchanged on
the mapping layer. Cells also have input or output connections to sensors or actuators.
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Figure 4.2: Development of a multi-cellular circuit from an initial cell. Each square repre-
sents a cell. The grayscale in the top layer of the cell represents the functionality of the cell in
the circuit. Cells can have inputs and outputs to exchange signals with the environment (e.g.
sensors or actuators).

Thereby the multi-cellular circuit can be seen like an organic tissue such as skin or mus-
cles, where each cell is capable of sensing its environment and acting on it.

The mechanisms of evolution, development and learning each operate on one of the
layers. Evolution manipulates the genetic material of the circuit in the genotype layer.
The growth and differentiation of the cells is controlled by the developmental system in
the mapping layer. Learning mechanisms are implemented in the phenotype layer of the
cells. This architecture is flexible: it allows mechanisms in the different layers to be
selected according to the application.

Conceptually, this architecture allows the growth and differentiation of multi-cellular
electronic circuits starting from an initial cell (figure 4.2).

This architecture describes only the “concept” of circuits capable of evolution, devel-
opment and learning. This architecture must be physically implemented in hardware to
obtain a POEtic circuit. This aspect is described in the next section.

4.3 Translating this architecture in a circuit

The architecture that we described in the previous section needs to be physically imple-
mented in hardware in order to obtain POEtic circuits.

Depending on the applications, different mechanisms of evolution, development or
learning may be used. Implementing the architecture shown above directly in silicon
does not allow to change these mechanisms depending on the application.

To achieve a higher degree of flexibility, the architecture is therefore best implemented
in a reconfigurable device (i.e. a chip that can be programmed to implement circuits)
such as a FPGA (field-programmable gate array) or the POEtic chip, which is described
in section 4.4.

Reconfigurable devices are composed of reconfigurable logic elements whose func-
tionalities and interconnections can beconfiguredor programmed to take a desired func-
tionality (e.g. a logic element can be configured as a logic gate or as a flip-flop).

Implementing the architecture described in section 4.2 in such a reconfigurable device
means that cells, together with their phenotype, mapping and genotype layers, are imple-
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Reconfigurable device

Reconfigurable logic element

Cell architecture

Cell implemented in
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Logic elements
configured to implement
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Figure 4.3: The architecture of the cell, with its phenotype, mapping and genotype layer (top
left), is implemented in hardware in a reconfigurable device (bottom left). The reconfigurable
device consists of an array of logic elements that can be programmed to implement a desired
functionality, such as logic gates or flip-flops. The cell with its phenotype, mapping and
genotype layers is therefore implemented in the reconfigurable device by configuring several
logic elements (right).

mented by configuring several logic elements of the reconfigurable device appropriately.
Figure 4.3 illustrates this process.2

Conceptually we intend to have a multi-cellular circuit that grows and develops ac-
cording to the genetic string of the circuit and to the developmental system. Hardware
however does not allow new cells to be physically created (i.e. no new silicon can be cre-
ated to implement cells). Therefore, instead of “growing” new cells, the reconfigurable
device is initially configured with undifferentiated cells. The developmental system then
controls the differentiation of those pre-existing cells according to the genetic string and
to the development rules.

In summary, the reconfigurable device is first programmed with an array of undiffer-
entiated cells. Afterwards development starts, and the cells of the multi-cellular circuit
differentiate according to the developmental system. Once development is completed,
the circuit can be interfaced to sensors or actuators with the input and output of the cells
(figure 4.4).

The developmental system controls the differentiation of the cells. This implies that
cells must be able to take the functionalities required by the development process. To
simplify the hardware implementation, we assume that the functionalities which can be
expressed by the development process are predefined by the user before evolution. These
predefined functionalities can be neurons (e.g. to evolve circuits that implement neural
networks), logic gates, signal processing elements, etc.

The functional part of the cells (i.e. the phenotype layer) is designed so that the cell
can implement any of these predefined functionalities. In other words cells aretotipotent:
an undifferentiated cell can take any of the functionalities which may occur in the circuit.

2The three layers of a cell do not exist as a 3D structure in the reconfigurable device. This three-layered
representation is only used for visualization purposes. The cell which is implemented in the reconfigurable
device consists of a planar array of reconfigurable logic elements. In practice the three-layers are simply
adjacent blocks of reconfigurable logic elements.
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Figure 4.4: The development of the multi-cellular circuit starts by programming the recon-
figurable device with an array of initially undifferentiated cells. Afterwards the developmental
system, according to the genetic string of the circuit and to the inter-cellular or environmental
signals, controls the differentiation of the cells at run-time (gray cells indicate cells that un-
derwent differentiation). Once the circuit is completely developed, inputs can be applied to
cells and outputs can be read.

The hardware implementation of totipotent cells can be done in two ways. A mech-
anism of self-reconfiguration3 can be employed, by which the mapping layer of the cell
reconfigures the logic elements that form the functional part of the cell to implement the
required functionality. Alternatively the cells can be designed so that they contain all the
predefined functionalities that can appear in the circuit, and the functionality that the cell
effectively implements is selected at run-time according to the development process.

Until now we considered the architecture of the cells, but not the mechanism by which
the reconfigurable device is initially programmed with cells, neither the mechanism of
evolution (the genotype layer is only a memory holding the genetic code of the circuit
but does not include any evolutionary mechanism). The initial configuration of the recon-
figurable device and the evolutionary mechanism are done by a processor outside of the
multi-cellular array. This processor may however be physically present in the same chip
as the reconfigurable logic elements.

Some reconfigurable devices, and in particular the POEtic chip described in section
4.4, contain in a single chip both reconfigurable logic elements and a processor. These
devices are thus ideally suited to implement the mechanisms described here since both the
multi-cellular circuit and the processor taking care of running the evolutionary mechanism
and programming the reconfigurable logic are integrated in a single chip.

The complete implementation of POEtic circuits in hardware thus consists of two
parts. One part is the multi-cellular circuit itself, implemented in reconfigurable logic,

3Self-reconfiguration is the capacity of one logic element in a reconfigurable device to change the func-
tionality of another logic element, therefore altering its functionality.
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and the other part is a processor that executes the evolutionary mechanism and programs
the reconfigurable logic with the array of cells (figure 4.5).

We refer to these two parts respectively as theorganic subsystemand theenvironment
subsystem. The organic subsystem is the part of the reconfigurable device where multi-
cellular circuits are implemented (i.e. the organic subsystem consists of reconfigurable
logic elements). These multi-cellular circuits develop like “organisms”, hence the name
of the subsystem.

The environment subsystem is the part of the reconfigurable device that executes the
evolutionary mechanism and that takes care of programming the reconfigurable logic
with the array of undifferentiated cells. In addition the environment subsystem can be
used to interface the multi-cellular circuits with their environment (hence the name of
the subsystem). In other words, input and output signals of the multi-cellular circuit can
go through the environment subsystem, which may for instance preprocess them, before
sending them to sensors or motors. In addition the environment subsystem also measures
the fitness of the circuit.

In summary, in order to use the multi-cellular circuit the following sequence of oper-
ations is followed:

1. Initialization of the organic subsystem with the cells, complete with the genetic
code of the entire circuit. These cells are undifferentiated yet.

2. The multi-cellular circuit develops according to the genetic string of the circuit and
the developmental system implemented in the mapping layer of the cells, and the
cells differentiate accordingly.

3. Once development is complete, the circuit is ready for operation. The processor can
apply inputs to the circuit, or read outputs. The fitness of the circuit is measured by
the processor that monitors the behavior of the circuit.

4. When a new circuit is required (e.g. when the fitness of another genetic string needs
to be measured) the process restarts at the first point.

In the next section we describe a particular reconfigurable device known as the POEtic
chip. This POEtic chip is ideally suited to implement POEtic circuits because it contains
an environment subsystem and an organic subsystem such as the one described here.

4.4 The POEtic chip

The POEtic chip is a custom reconfigurable device similar to a FPGA (field-
programmable gate array), but it is developed specifically to implement bio-inspired sys-
tems [122, 160, 161, 163].

In particular the POEtic chip is ideally suited to implement POEtic circuits since it
is composed of an organic subsystem (i.e. reconfigurable logic) which can be used to
implement multi-cellular circuits, and an environment subsystem which can be used to
configure the organic subsystem, run the evolutionary algorithms, measure the fitness, and
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Figure 4.5: The reconfigurable device which implements POEtic circuits is partitioned in two
subsystems: the organic and the environment subsystem. The organic subsystem consists of
reconfigurable logic elements (bottom) which are used to implement the cells which make up
the multi-cellular circuit capable of evolution, development and learning. The environment
subsystem (top) executes the evolutionary algorithm, configures the organic subsystem, and
measures the fitness of the circuit, typically by monitoring the inputs and outputs of the cir-
cuit. Interconnections of the multi-cellular circuit with the outside world can occur directly
at the level of the organic subsystem, or inputs and outputs can pass through the environment
subsystem that may preprocess them or use them to measure the fitness of the circuit.



4.4. THE POETIC CHIP 49

Organic
subsystem

Routing unit

Molecule

Molecule

Routing unit

Organic
interface

PIO

UART

SPI

I2C

16x16
booth mult

Environment
subsystem

AHB
controller

APB
bridge

16-bit
timer

16-bit
timer

CPU

Memory bus

connectivity

connectivity

Figure 4.6: The POEtic chip is composed of two subsystems. The environment subsystem is
composed of a processor (CPU) that is interfaced with several peripherals (e.g. for communi-
cation), external memories to store data, and the organic subsystem. The organic subsystem
is composed of locally interconnected reconfigurable logic elements called molecules, and
of routing units that are used for long-distance connections with dynamic routing. AHB and
APB refer to bus interfaces that are used to connect the CPU to its peripherals.

interface the multi-cellular circuit with its environment. The POEtic chip is configured to
implement POEtic circuits as explained in the previous section (figure 4.5).

The architecture of the POEtic chip is illustrated in figure 4.6 and its main features are
summarized below. More informations are provided in appendix A.

Environment and organic subsystem:The POEtic chip contains an organic subsystem
and an environment subsystem. The organic subsystem is composed of reconfig-
urable logic and is used to implement the cells of multi-cellular circuits. The en-
vironment subsystem contains a processor or Central Processing Unit (the POEtic
CPU) and communication peripherals. The processor can be used to implement
evolutionary algorithms, measure the fitness of the circuit, communicate with ex-
ternal devices (e.g. sensors, actuators) and configure the organic subsystem.

Fast access to the configuration bits:Evolvable hardware requires to test a lot of circuit
configurations before one which has the desired fitness is obtained. To minimize the
reconfiguration time and maximize the speed of evolution the processor has direct
and fast access to the configuration bits of the reconfigurable logic in the organic
subsystem. In comparison commercial FPGAs often require an external interface
which slows down the configuration.
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Documented configuration string: Since the POEtic chip is a custom chip, the meaning
of all of its configuration bits is known. This may be used to perform unconstrained
evolution in the reconfigurable logic and analyze the evolved circuits from their
configuration string, or to develop design tools suited for bio-inspired applications.
FPGA manufacturers nowadays do not disclose this information.

Hardware self-reconfiguration: Hardware self-reconfiguration is the reconfiguration of
one logic element by another one. Self-reconfiguration may allow adaptive hard-
ware (e.g. logic elements can be reprogrammed to act differently depending on
environmental stimuli), and self-repairing or self-reproducing hardware (e.g. logic
elements can reconfigure spare logic elements with a copy of their configuration
bits to recover a functionality or instantiate a new functional element). Self-
reconfiguration in commercial FPGAs often involves the reprogramming of an en-
tire area of the chip. With the POEtic chip the exact desired elements can be recon-
figured.

Optimized CPU instruction set: Evolutionary algorithms are stochastic algorithms and
therefore they make extensive use of pseudo-random numbers. They also manipu-
late the genetic code of the circuit (a bit string) at the bit level. The POEtic proces-
sor has hardware instructions to perform that kind of operations that may be used
to speed up the evolutionary process.

Dynamic routing: In conventional FPGAs physical connections between logic elements
must be planned at design-time and compilation tools take care of placing and rout-
ing the components on the FPGA using the available resources. Afterwards, there
is no possibility to change the placement of components or their routing without a
new compilation. This approach is therefore relatively static. In the POEtic chip
dynamic routingis introduced in the reconfigurable logic. Dynamic routing builds
connections between logic elements automatically and at run-time in hardware in
a distributed way. This may be used for dynamic reorganization within the chip,
for instance in case of self-repair, self-reproduction, or to react to environmental
changes (e.g. changes in the locations of inputs or outputs).

Expandable: Several POEtic chips can be connected together pin-to-pin. These inter-
connected chips act like a single expanded chip with a larger organic subsystem
(i.e. more reconfigurable logic elements). This allows to implement circuits that
do not fit in a single chip. When several POEtic chips are interconnected, only a
single CPU in one of the environment subsystem is active. All the other CPUs are
virtually disconnected from the expanded chip. The active CPU can however access
the communication peripherals in all of the POEtic chips [122].

4.4.1 Cells in the POEtic chip

Cells of multi-cellular circuits are implemented in the organic subsystem of the POEtic
chip. The organic subsystem of the POEtic chip is composed of two type of elements:
moleculesandrouting units.
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Molecules are reconfigurable logic elements that can be configured or programmed
to implement cells. A cell is typically composed of several molecules (the number of
molecules depends on the functionality of the cell). Routing units are used to implement
inter-cellular communication.

Molecules are locally connected to their immediate neighbors. They can be configured
to implement different functionalities such as memory elements, logic gates, etc.

The most common functionalities of the molecules are briefly explained here. In the
4-LUT4 mode the molecule implements a programmable Boolean function of 4 inputs.
In the 3-LUT mode the molecule implements two programmable Boolean functions of 3
inputs. This can be used to implement efficiently arithmetic functions (e.g. both the result
of a sum and the carry can be computed by the same molecule). In the shift memory
mode the molecule can store a 16-bit value. The configure mode is used to reconfigure a
neighboring molecule, thus changing its functionality. This may be used to implement cel-
lular differentiation according to the developmental system. Eventually two other modes,
called input and output, are used for inter-cellular communication in conjunction with the
routing units.

Routing units are used for connections among cells. Routing units are locally con-
nected between them, and in addition each routing unit is connected to a group of four
neighboring molecules, as illustrated in figure 4.6. Routing units support a mechanism
known asdynamic routingthat can build connections automatically and at run-time be-
tween input and output molecules. Dynamic routing relies on addresses or identifiers
stored in input and output molecules. A breadth first search algorithm implemented in the
routing units creates connections between input and output molecules that have the same
identifier. Connections can also be changed, added or removed at run-time by locally re-
configuring the address in the input or output molecules. Therefore new connections can
be created at run-time, even if they are not initially planned.

Figure 4.7 illustrates the organic subsystem of the POEtic chip configured to imple-
ment 4 fictive cells which are interconnected with the dynamic routing mechanism. The
input and output molecules are indicated in the figure, together with their respective ad-
dresses, and the path created by the dynamic routing mechanism.

4.4.2 Chip manufacturing

The POEtic chip is manufactured in a 0.35µm CMOS AMI process with 5 metal and 1
polysilicon layers.

Figure 4.8 shows the layout of a test chip that was manufactured before the final
chip. The left figure shows the chip in the development tools, and the corresponding
micrograph of the manufactured chip is shown on the right. The size of this test chip is
13 sq. mm. It includes the organic subsystem with three groups composed of 4 molecules
and one routing unit, and the environment subsystem with the POEtic CPU and a timer
and multiplier as sole peripherals.

4LUT means look-up table. That is the 4-LUT function is implemented by a look-up table with 4 inputs.
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Figure 4.7: Cells of POEtic circuits are implemented in the organic subsystem of the POEtic
chip. The figure depicts the organic subsystem which implements 4 cells. The three-layered
structure of cells is not represented here to simplify the figure. The cells are interconnected
via the routing units using dynamic routing. There is one routing unit for each group of 4
molecules. Input or output molecules (shown by ‘I’ and ‘O’ in the figure) have addresses
which are used by the routing units to perform dynamic routing. These addresses are repre-
sented by a number in the routing unit bordering input or output molecules. Once dynamic
routing is started, the dynamic routing units create connections between the routing units that
have the same address. These connections are indicated by the thick lines over the routing
unit connectivity lines.

Figure 4.8: Layout (left) and micrograph (right) of the POEtic test chip. The upper half of the
chip consists of the CPU, with the timer and multiplier peripherals. The lower half consists
of 3 easily distinguishable groups which are each composed of 4 molecules and one routing
unit.
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Figure 4.9: Layout of the final POEtic chip. The CPU and its peripherals are located at the
bottom of the chip. The rest of the space is occupied by 144 molecules and 36 routing units
organized as a 9 by 4 array.

The final POEtic chip contains all the peripherals described in section A.1. Its organic
subsystem is composed of 144 molecules organized as an 18 by 8 array of molecules.
Since each group of four molecules shares a routing unit, these routing units are organized
in a 9 by 4 array. Figure 4.9 illustrates the layout of the final chip that is 35 sq. mm.

4.5 Summary

In this chapter we described an architecture that is suited to implement evolution, devel-
opment and learning mechanisms in hardware. The architecture consists of a 2D array
of cells with each cell containing the entire genetic description of the circuit, a mapping
mechanism that implements the developmental system, and finally a functional part.

This architecture describes the “concept” of a circuit. The physical realization of
POEtic circuits is done in a reconfigurable device such as the POEtic chip. The use
of a reconfigurable device allows to change the evolutionary, developmental or learning
mechanisms depending on the application of the circuit.

The POEtic chip contains an organic subsystem where the multi-cellular circuits (or
organisms) are implemented. It contains also an environment subsystem (composed of a
processor and peripherals) that is used to evolve the genetic string of the circuit, and to
interface the circuit with the outside of the chip (i.e. the environment).

The organic subsystem of the POEtic chip contains two important features for the
implementation of POEtic circuits. Dynamic routing allows to create or change connec-
tions between cells at run-time. This may be useful to implement self-repair or self-
reproduction mechanisms. Self-reconfiguration allows a logic element to change the
functionality of another one, and this may be used to change the functionality of cells
at run-time when they differentiate.

In this chapter we did not describe any of the evolution, development or learning
mechanisms. This is the object of the following chapters. In particular in the next chapter
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we demonstrate how the architecture introduced here is implemented in the POEtic chip
to create functional multi-cellular circuits.



5 Evolution and growth of a
multi-cellular circuit

Abstract1

In the previous chapter we described a multi-cellular architecture suited to integrate mech-
anisms of evolution, development and also learning. We explained how this multi-cellular
architecture could be implemented in a reconfigurable device to obtain POEtic circuits.
We however did not implement a functional circuit following this architecture. The ob-
jective of this chapter is to show the implementation of this multi-cellular architecture on
the POEtic chip in a functional circuit (without learning mechanisms yet). Cells of the
multi-cellular circuit contain the complete genetic code of the circuit, a simple mapping
layer with a direct genotype to phenotype mapping that allows the circuit to grow from an
initial cell, and a functional part that computes a logic function. We demonstrate that this
multi-cellular circuit can be evolved to approximate Boolean functions and to control the
navigation of a mobile robot in a task of obstacle avoidance. Finally we discuss how this
circuit may be extended to handle circuit self-repair and self-replication.

5.1 Introduction

In chapter 4 we described a multi-cellular architecture that allows to combine mechanisms
of evolution, development, and eventually also learning. Cells of this architecture are
composed of three different layers: a genotype layer containing the genetic code of the
circuit, a mapping layer that controls the differentiation of the cell, and a phenotype layer
that is the operative part of the cell. In that chapter we explained that this architecture
could be implemented in the POEtic chip. We did not however describe any functional

1This work is a joint project with Yann Thoma of the Logic System Laboratory, EPFL, Switzerland. It
was published in [137]. Yann Thoma designed the cell, prototyped the system on an FPGA board, modified
the VHDL code of the molecules to allow simulations even in case of combinational loops, and modified to
the POEticMol software (low-level molecule editor) to allow co-simulation of the molecules with the CPU.
I did the high-level architecture of the system in VHDL including the configuration and I/O interface. I
developed the tools to emulate the CPU and co-simulate the CPU with the POEticMol software. Finally I
wrote the software running on the CPU and did all the evolutionary experiments.
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circuit.
The objective of this chapter is to describe how this architecture is implemented in the

POEtic chip2 to provide functional circuits. For this purpose a simple mapping mecha-
nism and a simple cell functionality are considered. Cells of the circuit contain the com-
plete genetic description of the final circuit. The mapping mechanism is a direct genotype
to phenotype mapping that allows the multi-cellular circuit to “grow” from an initial cell.
We refer to circuit “growth” and not “development” because of the direct genotype to
phenotype mapping. We reserve the term development when an indirect genotype to phe-
notype mapping is used. Cells differentiate according to the genetic string and to the
mapping mechanism, and they take a specific connectivity and functionality in the cir-
cuit. The functional part of the cell implements a simple Boolean function (the cell is not
capable of learning, learning is considered in chapters 8 and 9).

The functionality of the multi-cellular circuit is found by evolving the circuit genetic
string using a genetic algorithm. The genetic string encodes the functionality and the in-
terconnections of the cells. The multi-cellular circuit is demonstrated in two applications:
the approximation of Boolean functions (adder and multiplexer), and the control of the
navigation of a mobile Khepera robot in a task of obstacle avoidance.

We also discuss how the mechanism of growth may be extended to implement circuit
self-repair and self-replication mechanisms.

This chapter is organized as follows. The circuit and cell structure are described in
section 5.2. Section 5.3 shows how the circuit is evolved. Finally the results are discussed
in section 5.4 before concluding in section 5.5.

5.2 Multi-cellular circuit and cell

The overall circuit is composed of two cells (figure 5.1). From the functional point of
view, each cell implements a Boolean function of three inputs. The circuit has 6 external
inputs (In 0 to In 5 in the figure), e.g. to connect to sensors, and 2 outputs (Out 0 and
Out 1 in the figure), e.g. to connect to actuators.

Evolution is applied to the cell functionality (i.e. the Boolean function can be mod-
ified) and to the cell input connectivity. The input of a cell can come from one of the
external inputs, or from the output of one of the two cells.

Cells are composed of the three layers (genotype, mapping and phenotype layers)
described in chapter 4. The processor of the POEtic chip first configures the molecules
of the organic subsystem (i.e. the reconfigurable logic within the POEtic chip) with the
two cells complete with the genetic code of the entire circuit. These cells are initially
undifferentiated and unconnected. Growth then starts, and according to the genetic string
of the circuit the cells interconnect and differentiate by expressing a corresponding part of
the genetic code. Afterwards the processor applies inputs to the circuit, reads the outputs
of the circuit, and it measures the fitness of the circuit from its behavior.

2The architecture is actually implemented in a prototype of the POEtic chip, that consists of a FPGA
configured to emulate the POEtic chip [137].



5.2. MULTI-CELLULAR CIRCUIT AND CELL 57

Cell 0

LUT

Cell 1

LUT

In 0

In 1

In 2

In 3

In 4

In 5

Out 0

Out 1

Figure 5.1: Functional view of the multi-cellular circuit with two cells that can compute logic
functions of three inputs with a look-up table (LUT). The circuit has two outputs (Out 0 and
Out 1) and six external inputs (In 0 to In 5). The outputs of the circuit are connected by
design to the outputs of the cells. The function of the cell (i.e. the content of the LUT) and the
connections of the inputs of the cells are evolved. The dashed lines symbolize these evolved
connections.

The mechanisms implemented in the three layers of the cell are illustrated in figure
5.2 and described below.

5.2.1 Phenotype and genotype layers

Functionally, the cell implements a Boolean function of 3 inputs. This is implemented by
a 3-LUT molecule (i.e. a molecule that implements a 3-input look-up table). Three input
molecules are used to receive signals from other cells or external inputs, and one output
molecule provides the result of the Boolean function for other cells and the output of the
circuit.

The Boolean function and the interconnections between the cells and the inputs of the
circuit are encoded in the genetic string. The genetic string contains 4 genes for each cell,
each stored in one molecule.

The first gene encodes the functionality of the cell, which is simply the content of the
look-up table of the 3-LUT molecule. The three other genes encode the connectivity of
the three inputs of the cell. The inputs of the cell can be connected to any of the 6 external
inputs of the circuit and to the output of any of the two cells. The connections of these
inputs are implemented with the dynamic routing mechanism of the POEtic chip. For this
purpose the 6 external inputs and the outputs of the two cells have predefined addresses.
The genes coding the interconnections of the cell simply contain the address of the signal
to which the input must be connected. Dynamic routing then takes care of creating the
connections.

When the cell differentiates, the content of the corresponding 4 genes is transferred
into the 3-LUT molecule and into the 3 input molecules. Once the content of these
molecules is programmed, the cell takes the corresponding functionality, and the inputs of
the cells are connected with the dynamic routing mechanism according to the addresses
stored in the input molecules.
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Cell architecture
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Figure 5.2: Cells of POEtic circuits are composed of three layers: phenotype, mapping and
genotype (left). The mechanisms implemented in these layers are represented on the right.
The genotype layer is a memory storing the genetic code of the entire circuit (here depicted
storing the configuration of 4 cells). The mechanism in the mapping layer allows the multi-
cellular circuit to grow from a single cell and controls the functional differentiation of the cell.
This mechanism selects the appropriate part of the genetic code according to the identifier of
the cell IDIn (i.e. the position of the cell in the circuit) and configures the phenotype layer of
the cell with the appropriate functionality. At the same time the mapping mechanism transmits
to another cell the identifier IDOut which becomes the identifier of the next cell in the circuit.
That cell uses this identifier in the same way to differentiate. The phenotype layer implements
a 3-input look-up table. This means that the cell can implement a Boolean function of 3 inputs
(I0 to I2). The content of the look-up table and the connectivity of the inputs of the cell are
encoded in the genetic string and provided by the mapping mechanism.
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Figure 5.3: The growth phase occurs at the level of the mapping layer of the multi-cellular
circuit (left of figure). Growth assigns to each cell a unique identifier (ID). Here the growth of
a 4-cell circuit in a 3x3 array of cells is illustrated. Before growth, all the cells have an ID of
1...1111 (middle of figure). The growth process starts from the lower-left cell that is initialized
by the POEtic processor with the ID 0...1000 (right of figure). The cell then connects to
another cell in the array using the dynamic routing mechanism and transfers the ID shifted by
one. Hence the second cell (middle left cell) receives the ID 0...01000. This process continues
until a cell receives the ID 0...0001, at which point growth process is completed.

5.2.2 Mapping layer: growth and differentiation

The mapping mechanism builds the multi-cellular circuit from the genetic code of the
circuit. It consists of two phases, growth and differentiation. The growth phase is used
to assign to each cell a unique 16-bit identifier or ID (i.e. each cell receives a sequential
number). This identifier is a number that indicates the position of the cell in the circuit. It
is used during the differentiation phase to select the appropriate part of the genetic string
to express.

For a circuit composed of n cells, the identifier of the first cell in binary is a 1 followed
by n-1 0’s, with n the number of cells in the circuit. Here two cells are implemented (n=2)
hence the identifier of the first cell is 0...00010.

The POEtic processor first configures the entire organic subsystem with the cells and
the genetic code of circuit. These cells are yet unconnected and undifferentiated: all the
cells have an identifier of 1...11111. This identifier is also used as the address of the
cell. It is used to connect to undifferentiated cells with the dynamic routing and trigger
their differentiation. All the cells are initially inactive until they get connected with the
dynamic routing.

The POEtic processor initiates the growth by connecting to an undifferentiated cell
with identifier 1...11111 and transmitting the identifier of the first cell in the circuit over
this connection. This identifier is IDIn in figure 5.2. At this point, the cell which got
connected activates (the others stay inactive waiting for a connection). Logic within the
mapping layer of the activated cell computes the identifier IDOut of the next cell (see
figure 5.2): IDOut is equal to IDIn shifted by one (e.g. if IDIn is 0...01000 then IDout is
0...00100). Afterwards this cell connects with the dynamic routing to another undifferen-
tiated cell with identifier 1...11111 and transmits IDOut, which becomes the identifier of
that cell. The newly connected cell repeats the same process, which continues until a cell
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Figure 5.4: The cell is composed of 10 by 4 molecules. Five molecules form the pheno-
type, 16 molecules store the genotype and the remaining cells are used for the growth and
differentiation (mapping layer).

receives the identifier 0...00001. This indicates that it is the last cell in the multi-cellular
circuit, and the cell does not attempt to connect. This process is illustrated for a 4-cell
circuit in a 3x3 array of cells in figure 5.3.

Afterwards the cells differentiate according to their identifier (see figure 5.2). The
identifier indicates which genes in the genetic string are used to program the functional
part of the cell. The configuration of each cell is stored in 4 genes. The first cell thus
expresses the first 4 genes, the second cell the following 4 genes, etc. The 4 genes are used
to program the 4 molecules implementing the functional part of the circuit, as described
in section 5.2.1. This is done using the self-reconfiguration capabilities of the molecules
of the POEtic chip.

5.2.3 Implementation

The cell is composed of 40 molecules, as illustrated in figure 5.4. The genotype layer
is implemented with 16 memory molecules that store the genetic code of the entire cir-
cuit. Each cell of the multi-cellular circuit needs 4 molecules to store its configuration,
therefore the cell developed here can be used for systems of up to 4 cells. The mapping
from genotype to phenotype is done by 18 molecules: 8 molecules are responsible for
the growth process, and 10 molecules used for differentiation. The phenotype layer is
implemented by 5 molecules. Three of them serve as inputs (input molecules). One is
the functional part of the cell, that implements the Boolean function of 3 inputs (a 3-LUT
molecule). The last one is the output (output molecule).

5.3 Circuit evolution

The genetic string of the circuit is evolved with a genetic algorithm (GA). The circuit
is evolved to approximate Boolean functions (adder and multiplexer) and to control the
navigation of a Khepera robot in a task of obstacle avoidance.
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Cell 0

LUT

Cell 1

IN2 IN1 IN0 LUT IN2 IN1 IN0

Figure 5.5: The genetic string of the circuit is composed of 34 bits (17 bits per cell). The
connectivity of the inputs of the cells is coded on 3 bits, whereas the lookup table is coded on
8 bits.

Inputs Multiplexer Full adder
A B Sel or Cin Out Cout Sum
I2 I1 I0 O1 O1 O0

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 1 0 1
1 0 1 0 1 0
1 1 0 1 1 0
1 1 1 1 1 1

Table 5.1: Truth table of the multiplexer and of the full adder. InputI0 is the select of the
multiplexer or the carry-in of the full adder.

The genetic code is illustrated in figure 5.5. Eight bits are used to encode the content
of the LUT and three bits are used for each cell input to encode the connectivity (i.e. the
input of each cell can come from 8 possible sources, the 6 external inputs or the output of
the two cells, therefore 3 bits are necessary to encode the connectivity). The genetic code
is thus 17 bits per cell and the complete genetic code takes 34 bits. Inputs and outputs of
the circuit are set and read by the POEtic processor, that also runs the GA and computes
the circuit fitness.

5.3.1 Evolution of logic functions

The multi-cellular circuit is evolved to implement a multiplexer and a full adder. Three
inputs are used (inputs In 0 to In 2) while inputs 3, 4 and 5 are set at all time to constant
values 0, 1 and 0 respectively (see figure 5.1 for the inputs and outputs of the circuit). The
multiplexer uses one output whereas the adder uses two, that are the sum and the carry.
Table 5.1 shows the truth table corresponding to the two functions. Circuits are evolved
by a GA with the following parameters: population size of 200, rank selection of the 20
best individuals (each selected individual is reproduced 10 times), 5% of mutation rate,
one-point crossover rate of 30%, and elitism that copies the best individual unchanged in
the new generation.

The fitness is evaluated by comparing the output of the circuit with the desired output
for all possible inputs. It is equal to the number of times the outputs take the correct
value. The maximum fitness is thus 8 and 16 for the multiplexer respectively the full
adder. Evolution is performed with a simulation of the multi-cellular circuit to speed up
experiments (the software simulation tools are described in appendix B). Figure 5.6 shows
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Figure 5.6: Maximum and average fitness over the generations when evolving logic functions
(average of 32 runs). The horizontal dashed line represents the maximum fitness.

the fitness over the generations averaged on 32 runs for the two functions. Evolution
manages to implement the multiplexer in 31 of the 32 runs (in one run the maximum
obtained fitness is 7). The full adder is evolved in 20 of the 32 runs (remaining runs
achieve a maximum fitness of 14). As expected the multiplexer is easier to evolve than
the full adder because it is a simpler circuit that can be implemented with only one cell
whereas the full adder needs two.

5.3.2 Evolution of a robot controller

The circuit is evolved to control the navigation of the two-wheel differential drive Khepera
mobile robot [120] in a task of obstacle avoidance. In other words, the circuit maps
sensory inputs to motor commands. The Khepera robot has 8 proximity sensors. The
proximity sensors are thresholded and connected to the inputs of the circuit. When the
robot is closer than about 3 cm from a wall, the sensor value is 1, otherwise it is 0. The
motors of the Khepera are controlled by the output of the cells. An output of 1 corresponds
to a wheel speed of +80 mm/s, while an output of 0 corresponds to a speed of -80 mm/s.
Figure 5.7 shows the mapping of the sensor inputs and motor outputs on the circuit. Some
sensors are grouped by taking the value of the most active sensor.

The robot runs in a rectangular 40x65 cm arena. The robot has a sensory motor period
of 100 ms during which the speeds of the wheels remain constant. At the end of the period,
the outputs of the circuit are read and the speed of the wheels is updated. Afterwards the
proximity sensors are read and the inputs of the circuit are set accordingly.

The fitness of the circuit is determined from the behavior of the robot. The fitness
function rewards straight motion, which implicitly leads to obstacle avoidance. The fit-
ness function is the sum of the normalized speeds of the wheels at each sensory-motor
step, when both wheels have positive speeds (spin forward) [40].

The circuit is evolved using the same GA parameters as in section 5.3.1. Evolution is
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Figure 5.7: Mapping of the Khepera proximity sensors and actuators (shown on the left) on
the multi-cellular circuit (right). Sensor readings are mapped to inputs In 0 to In 5 of the
circuit, while the outputs Out 0 and Out 1 control the speed of the wheels. Some sensors are
grouped by taking the value of the most active sensor.

performed with a simulation of the robot and a simulation of the multi-cellular circuit, to
speed up experiments. Figure 5.8 shows the evolution of the fitness over the generations
averaged on 32 runs. The best controller is already capable of obstacle avoidance after
about 10 generations.

5.4 Discussion

The implementation of a cell requires 40 molecules. Comparatively, the functional part of
the cell requires only 5 molecules. There is thus a significant resource overhead needed
to implement the developmental mechanism and the memory storing the circuit genetic
string. However the developmental system can potentially offer benefits in terms of self-
repair and self-replication, as discussed below. In addition, the cell functionality used
here is very simple. If more complex cell functionalities were used (e.g. neurons as in
chapters 7 and 9) the overhead would proportionally be reduced.

The mapping mechanism that we described in this chapter can be applied to cells of
any shape, which can be physically placed anywhere in the organic subsystem, even at
irregular intervals. This flexibility is provided by the dynamic routing that takes care of
interconnecting automatically the cells. Placing cells at irregular intervals may be neces-
sary if parts of the organic subsystem are damaged: cells can be placed on the functional
molecules (an off-line test may reveal the damaged locations), and dynamic routing (as-
suming it is not damaged) takes care of connecting the cells in a transparent way.

Alternatively, cells could be interconnected by the processor in the POEtic chip when
it configures the organic subsystem with the cells for the first time. This solution however
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Figure 5.8: Evolution of the maximum and average fitnes of the robot controller (average of
32 runs). Maximum fitness is 1.
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Figure 5.9: Possible extension of the growth mechanism to provide self-repair. A 4-cell
circuit develops on a 3x3 array of cells with three faulty cells that are indicated in gray. Since
faulty cells deactivate their dynamic routing inputs, the growth process automatically makes
use of spare cells available in the circuit.

does not provide the same flexibility as the mechanism implemented here, especially if
the cell locations in the circuit vary (i.e. in case of faults).

The mapping mechanism described here may be used as a foundation to implement
self-repair and self-replication mechanisms. Self-repair requires a mean to detect faults
in the circuit. This can be done for instance by functional redundancy within the cells
or following the Immunotronics approach [14]. Upon detection of a fault, the defective
cell would go off-line by deactivating the input molecule used for dynamic routing during
growth. This can be done with local self-reconfiguration. At this stage a new develop-
ment process would be triggered. Since growth relies on dynamic routing to connect to
a cell with the appropriate identifier, the faulty cell would be avoided, and a spare cell
available in the circuit would be used instead. This process is illustrated in figure 5.9.
As long as enough functional cells are available in the system, the development process
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would automatically connect to the required number of cells to implement the desired
circuit. Dynamic routing and self-reconfiguration would thus be exploited to implement
self-repair mechanisms in the POEtic chip in a transparent way. Implementing this sys-
tem however requires that the dynamic routing units are not damaged. It also requires that
faulty cells can still deactivate their dynamic routing input. Eventually the state of faulty
cells needs to be transferred to spare cells, so that the state of the circuit is not lost when
a fault occurs. All these aspects remain to be investigated.

Another extension of this circuit consists in transferring the genetic code from one
cell to another during growth. This modification may allow to implement self-replicating
circuits in the POEtic chip. This also remains the object of future work.

Compared to classic unconstrained evolution which manipulates directly the configu-
ration bits of a FPGA [165], evolution is performed at a higher level thanks to dynamic
routing. Indeed the approach could be classified asintrinsic schematicevolution. Con-
nections are evolved by encoding the address of the inputs rather than by encoding the
configurations of many switch boxes. Consequently the genetic code is more compact
and evolution may be faster. Note that the genetic coding resembles Cartesian genetic
programming [113] that also encodes the functionality and connectivity of every cell.
Circuits evolved in simulation with Cartesian genetic programming could be intrinsically
evolved in this multi-cellular circuit.

5.5 Summary

In this chapter we demonstrated how the multi-cellular architecture introduced in chapter
4 can be implemented in the POEtic chip to obtain functional multi-cellular circuits. We
successfully evolved these circuits to approximate Boolean functions, and to control the
navigation of a robot.

We implemented a mapping mechanism that relies on dynamic routing to let the cells
interconnect and differentiate at run-time. We discussed how this mechanisms may be
improved to provide self-repair and self-replication capabilities to multi-cellular circuits.

The mapping mechanism implemented here uses a direct genotype to phenotype map-
ping for demonstration purposes. In the next chapter we introduce the morphogenetic
system, a genetic encoding and developmental system that allows complex indirect geno-
type to phenotype mappings and that is designed especially for multi-cellular circuits.
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6 Evolutionary morphogenesis for
multi-cellular systems

Abstract1

In this chapter we introduce a minimalist genetic encoding and developmental system
suited for multi-cellular systems such as POEtic circuits. We call this system themorpho-
genetic system. This morphogenetic system is inspired by gene expression and cellular
differentiation. Yet it is a computationally inexpensive system that allows fast simulation
and efficient hardware implementation. In particular it allows to evolve multi-cellular
systems composed of any predefined high-level or low-level cell functionalities, such as
the one we may wish to have in POEtic circuits. The morphogenetic system shows better
scalability compared to a direct genetic encoding in the evolution of structures of differen-
tiated cells, and its dynamics provides fault-tolerance even at high fault rates. We analyze
the morphogenetic system in function of its parameters, and we describe its hardware
implementation in the POEtic chip.

6.1 Introduction

In introduction we described bio-inspired POEtic circuits that encompass mechanisms of
evolution, development and learning. We argued that to fully benefit from these POEtic
circuits, an evolutionary system is required that takes into account their characteristics,
and that combines a genetic encoding and a developmental system.

The need for a specific evolutionary system stems primarily from the issue of scal-
ability that we evidenced in evolvable hardware, where genetic algorithms with a direct
genotype to phenotype mapping are generally used (chapter 2). In addition, conventional
genetic algorithms do not exploit the complex mechanisms of development which are seen
in biological organisms. The mapping between the genotype and the phenotype is static
and it does not allow inter-cellular or environmental interactions during development that
may lead to adaptive development or fault-tolerant circuits.

1Part of this work was published in [135, 134].
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Indirect genetic encodings based on developmental systems, that we reviewed in chap-
ter 3, are one possibility to address these points. We remarked that developmental systems
need not necessarily be biologically plausible to perform well. Simpler developmental
systems may perform as well and use less computational resources. This is particularly
important in evolutionary computation, that requires the evaluation of a lot of candidate
solutions, and in hardware applications, that require compact implementations.

In this chapter we introduce a minimalist genetic encoding and developmental system
for multi-cellular systems which we call themorphogenetic system. It is inspired by
gene expression and cellular differentiation and attempts to achieve low computational
complexity in order to allow fast simulation and efficient hardware implementation.

This morphogenetic system takes into account the requirements of multi-cellular PO-
Etic circuits. It assumes that circuits consist of a regular 2D array of cells, as introduced
in chapter 4. It assumes local communication between cells. This allows to apply the
morphogenetic system to circuits regardless of their size, and this allows cells to be added
or removed from the circuit during development. The morphogenetic system can be im-
plemented in a fully distributed way (i.e. cellular implementation). This allows fast de-
velopment, close interaction between the development mechanism and the environment,
and this is potentially a more robust solution than a centralized implementation. Finally
the morphogenetic allows inter-cellular interactions that may provide fault-tolerance.

The functionality of POEtic circuits is defined by the functionality of each cell and
by their interconnections. Cell functionalities must be “compatible”: they must be able
to interconnect with each other and exchange information in a meaningful way, and in-
terconnections between cells should not lead to electrical problems (e.g. short circuits).
For this reason the morphogenetic system relies on predefinedcell functionalitiesthat are
electrically compatible with each other. These functionalities may be high-level functions
such as neurons, or low-level functions such as elementary logic gates. Interconnections
among cells are considered as part of the cell functionalities. This can be efficiently im-
plemented with dynamic routing on the POEtic chip.

After describing the morphogenetic system, we investigate its evolvability by evolving
structures of differentiated cells, and we investigate its scalability by evolving phenotypes
of different sizes. Afterwards we consider the potential benefits of the dynamics of the
developmental system on fault-tolerance, and we analyze extensively the morphogenetic
system. All these experiments are done with a software model of the morphogenetic
system and of the multi-cellular circuit. Finally we describe the implementation of the
morphogenetic system in hardware on the POEtic chip.

This chapter is organized as follows. Section 6.2 introduces the morphogenetic sys-
tem. Section 6.3 investigates its capacity to evolve 2D structures of various complexity,
and section 6.4 tests its scalability by evolving phenotypes of different size. The capacity
of the dynamics of the morphogenetic system to withstand faults is investigated in sec-
tion 6.5. The morphogenetic system is analyzed in section 6.6. In particular the effect
of the parameters of the system on the fitness is studied, as well as the morphology of
phenotypes obtained by the developmental process. In section 6.7 we implement the mor-
phogenetic system in hardware on the POEtic chip. Results are discussed in section 6.8
before concluding in section 6.9.
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6.2 Morphogenetic system

The morphogenetic system is inspired by the mechanisms of gene expression and cellular
differentiation of biological organisms, notably by the fact that concentrations of proteins
and inter-cellular chemical signaling regulate the functionality of cells [19, 188]. In par-
ticular it takes inspiration from the early stage of development, when cells differentiate
according to their position in the organism, as specified by gradient of chemicals known
as morphogens. Quoting Wolpert [188]:

Cells could have their position specified by a variety of mechanisms. The
simplest is based on a gradient of some substance. If the concentration of
some chemical decreases from one end of a line of cells to the other, then
the concentration of that chemical in any cell along the line effectively spec-
ifies the position of the cell with respect to the boundary. A chemical whose
concentration varies, and which is involved in pattern formation, is called a
morphogen.

The morphogenetic system assumes that the cells of the circuit can implement a func-
tion from a set of predefined functionalities (something akin to skin, muscle, neuron cells,
etc. in biological organisms). The morphogenetic system allows to “develop” a multi-
cellular circuit from its genetic code by executing two simple phases that operate in par-
allel. A signalingphase relies on local communication in the cellular circuit to exchange
signals among adjacent cells to implement a diffusion process. In parallel, theexpression
phase finds the functionality to be expressed at each cell by matching the signal intensities
in each cell with a corresponding functionality stored in an expression table. The genetic
code contains the position of diffusing cells (diffusers) and the signal-function matching
of the expression table. It is evolved with a genetic algorithm.

6.2.1 Family of functions

The morphogenetic system relies on a set of predefined functionalities which we refer to
as a family of functions. The family of functions must include a sufficiently rich repertoire
of functionalities to realize the desired circuit. However the morphogenetic system is
essentially independent of the phenotype: any functionalities can be used as long as they
fit in cells. For instance pixels of different colors may be used to evolve patterns, or logic
gates may be used to evolve circuits.

6.2.2 Signaling phase

Inter-cellular communication allows the exchange of signals between adjacent cells. A
signal is a simple numerical value (the signal intensity) that the cell owns, and that adja-
cent cells are able to read, akin to a chemical concentration. Signals may be of different
types (i.e. of a different chemical nature). Signaling starts fromdiffusersplaced in cells.
There are diffusers for the different type of signals. When a cell contains a diffuser for a
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Figure 6.1: The three first arrays are snapshots of the signaling phase with one type of signal
and two diffusers (gray cells) at the start of the signaling phase (top left), after two time steps
(top right) and when the signaling is complete (bottom left). The numbers inside the cells
indicate the intensity of the signals in hexadecimal. The expression phase (bottom right) maps
the signal intensities in the cells into functionalities with an expression table that contains the
signal-function matching rules. In this example the signalD matches the second entry of the
table with signalF (smallest Hamming distance), thus expressing function 1.
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1 Decode the chromosome to find the location of the diffusers. For all the diffusers of
typet in cellsj setV j

t = 1 andCj
t = 15, for all the other signals of types in cells i

setV i
s = 0 andCi

s = 15.
2 For each signals and each celli do steps 3 to 5:
3 If V i

s = 1 then skip this cell or signal.
4 Compute the intensity of signals. It is Ci

s = max(Cj
s − 1, 0). j is any of the four

neighbors of celli for which V j
s = 1. SetV i

s = 1. If not such cellj exists, then
V i

s = 0.
5 Perform the expression phase to obtain the cell functionalities according to the signal

intensities in the cells
6 Repeat step 2 to 5 15 times to complete the signaling phase. Each iteration corresponds

to adevelopmental step.

Table 6.1: Algorithm of the signaling phase of the morphogenetic evolutionary system.

particular signal type, the intensity of this signal in the cell is always set to the maximum
intensity.

We refer to the intensity of a signal of types in cell i asCi
s. The signaling algorithm

(see below) only sets signals which have not yet been initialized (i.e. which have not yet
been set by the signaling algorithm). For this reason each each signal in each cell has a
flag which indicates if it is initialized (or valid). WhenV i

s = 1 the signal of types in cell
i is initialized, otherwiseV i

s = 0.
Signals of each type are processed independently, without interactions among them,

as if they were in different chemical layers. Initially, except for diffusers, all the signals
are uninitialized. Signals are then set up by the signaling algorithm. The signaling algo-
rithm ensures that signal intensities decrease linearly with the Manhattan distance to the
diffusers.

The signaling algorithm is illustrated in table 6.1. All the signals are updated syn-
chronously at the end of step 4 in the table. Step 2 to 5 correspond to onedevelopmental
step. Each additional developmental step expands the signals around the diffusers. Figure
6.1 illustrates this in the case of a single type of signal, with two diffusers placed on the
cellular circuit. After each developmental step the expression phase (described below) is
executed to obtain the functionality of the cells according to the signal intensities.

In the current implementation the signal intensities are represented by 4-bit numbers.
Therefore, after24 = 16 steps the development of the multi-cellular system is completed.

6.2.3 Expression phase

The expression phase assigns a function to each cell by matching the signal intensities
inside that cell with the entries of an expression tableT stored in the genetic string (figure
6.1, bottom right). Figure 6.2 shows the expression table withn entries (i.e. there aren
functionalities in the function family) andS = 4 types of signals. Each entry of the table
contains the intensities of the signals and the function to express in case of match. The
intensity of signals in the entryj of the table is noted byT j

s . A cell i is said to match an
entry j of the expression table when the distanced =

∑S
s=1 DOp(Ci

s, T
j
s ) is minimum.
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Figure 6.2: The expression tableT of the morphogenetic system contains one entry for each
functionality in the family of functionalities. Here the expression table is shown withn entries
and therefore there are a maximum ofn functionalities. For each of these functionalities the
expression table contains the intensities of all the signals (here there are 4 type of signals) to
which the signal intensities in the cells are compared to find the functionality to express in the
cell.
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1 T4

1

Diffuser 1 Diffuser m

Xm Ym Typem

Expression table Diffusers

Figure 6.3: The genetic code contains two parts. The first is the expression tableT , here with
n entries. In this example there are four types of signals therefore each entry is 16 bits long.
The second part contains the locations and types of the diffusers. The number of bits for the
X and Y coordinates depends on the size of the circuit. The number of bits for the type of the
diffuser depends on the number of signal types (e.g. 2 bits when 4 signal types are used).

The distance operatorDOp is the bitwise Hamming distance.

6.2.4 Genetic encoding and evolution

The genetic code contains the expression tableT , and the location of the diffusers (figure
6.3). The genetic code therefore affects the pattern of diffusion and the expression rules
of the cells in the circuit. However it does not encode the functionalities that a cell can
express, which are predefined.

In most of the experiments described in this chapter we use 4 types of signals. In
chapters 7, 8, 9 we always use 4 types of signals. In this case each entry of the expression
table is 16 bits (4 signals coded on 4 bits each). The functions are not encoded and evolved
in these experiments. The locations of the diffusers are stored as pairs of X,Y Gray-coded
coordinates, plus two bits (in the case of 4 signal types) indicating the type of the diffuser
(i.e. 22 = 4 type of signals). A population of genetic strings is randomly initialized and
evolved using a standard genetic algorithm [50].

6.2.5 Computational requirements

The morphogenetic system is implemented using only additions, subtractions, compar-
isons and logic operations. There are no floating point operations and none of the costly
operations of multiplication or division are required. The time required for complete de-
velopment in a sequential implementation is of orderO(X · Y · S · n) for an X by Y



6.3. EVOLVABILITY 73

multi-cellular system withS types of signals andn entries in the expression table. In a
cellular (distributed) implementation, where each cell implements the signaling and ex-
pression mechanisms, the time is of orderO(S · n). The number of diffusers influences
only the initialization time (i.e. setting the signal intensities to the maximum value after
decoding the genetic string).

6.3 Evolvability

A prerequisite for evolvability is the ability of a genetic encoding to generate phenotypes
of various structure and complexity. This capacity is assessed by evolving phenotypes to
resemble various 2D patterns. In this case cell functionalities correspond to pixel colors.
The six 8x8 target patterns illustrated in figure 6.4 are considered. The first four patterns
(uniform, checkerboard, mixed1andmixed2) are black and white (family of functions:
black, white) and test whether the morphogenetic system is capable of generating uni-
form structures and different kinds of diversified structures. Those patterns were initially
proposed in [135]. The remaining two patterns (Norwegian flagandCA-generatedpat-
tern) are composed of four colors (family of functions: black, white, blue, red). They
were initially proposed in [37]. TheNorwegian flaghas symmetries which may be ex-
ploited by a developmental system as proposed in [148]. TheCA-generatedpattern is
generated with a cellular automata (CA) using Wolfram’s rule 90 starting from a random
initial line. This rule tends to generates patterns of high complexity that may be difficult
for a developmental system to evolve.

Uniform Checkerboard Mixed 1

Mixed 2 Norwegian flag CA−generated

Figure 6.4: The pattern coverage task consists in evolving an array of 8x8 cells with a spe-
cific target pattern. There are six target pattern. The first four are binary patterns (uniform,
checkerboard, mixed1andmixed2). The last two patterns use 4 colors and are theNorwegian
flagand theCA-generatedpattern.

The parameters of the morphogenetic system are the following: 2 or 4 entries in the
expression table (depending on the size of the function family), 16 diffusers and 4 types
of signals. This number of diffusers has been selected empirically from preliminary tests.
The chromosome size is 160 and 192 bits for the 2- and 4-color patterns respectively: 2 or
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4 entries in the expression table * 16 bits + 16 diffusers * 8 bits (6 bits for the coordinates
and 2 bits for the type of the diffuser).

The population is composed of 400 individuals, selection is rank selection of the 300
best individuals (the first 100 best individuals are reproduced twice, the following 200
are reproduced once), the mutation rate is 0.5% per bit, one-point crossover rate is 20%
and elitism is used by copying the 5 best individuals without modifications into the new
generation.

The fitness is proportional to the resemblance of the phenotype to the target. In order
to maintain diversity, phenotypic traits that occur often in the population decrease the
fitness of the individuals that own them [37].

The morphogenetic system is compared to a direct genetic encoding where each pixel
is encoded by 1 or 2 bits for the 2- and 4-color patterns, leading to a chromosome of 64
and 128 bits respectively. The parameters of the genetic algorithm are the same as those
used with the morphogenetic system.

Evolution is done for 2000 generations and figures 6.5 and 6.6 show the evolution of
the maximum fitness (average of 10 runs) for the first 500 generations for all the target
patterns.

The morphogenetic system always reaches the maximum fitness with theuniform,
checkerboardandmixed 1patterns, on average in 1, 8 and 49 generations respectively.
The morphogenetic system cannot fully cover themixed2pattern, but it comes very close
(fitness higher than 0.95).

The Norwegian flagandCA-generatedpatterns, which display more complex struc-
tures and four instead of two colors, cannot be covered completely within 2000 genera-
tions by the morphogenetic system. However the fitness is still relatively high (average
maximum fitness of 0.84 and 0.88 respectively).

The direct genetic encoding manages to reach the maximum fitness with all the pat-
terns: the small search space and the simple structure of the fitness landscape favor that. It
takes on average 51 generations to evolve the patterns of two colors, and 136 generations
for the pattern of 4 colors.

In the problem considered here, an indirect encoding tends to have a more complex
fitness landscape than a direct encoding because of epistatic interactions among genes,
which may generate more rugged fitness landscapes (see section 6.6.4 for a preliminary
analysis). Furthermore some phenotypes may not be expressible because the genotype to
phenotype mapping may not allow some regions of the phenotypic space to be encoded.
However this does not mean that direct genetic encodings should be favored, since direct
encodings are not well suited for multi-cellular circuits capable of dynamic reorganization
for which the morphogenetic system is designed.

Still, the morphogenetic system is capable of generating patterns of various complex-
ity with regular and irregular structures with a relatively high fitness. The fine details
of the phenotype may be left to an epigenetic mechanism, such as local hill climbing
or Hebbian learning for neural networks, while the phylogenetic mechanism deals with
structures at a coarser level. In this case the fact that specific phenotypes cannot be exactly
evolved may not be an issue.

The process of development is illustrated in figure 6.7 for a larger 64x64Norwegian
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Figure 6.5: Evolution of the maximum fitness for the black and white patterns (average of 10
runs).
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Figure 6.6: Evolution of the maximum fitness for theNorwegian flagand CA-generated
patterns (average of 10 runs).

flag (the 8x8 flag develops in very few steps, larger phenotypes make a better illustration
of development). Each picture represents the functionality of the multi-cellular circuit
after one developmental step, that is each picture is taken after the signaling phase up-
dates the signal intensities and the expression phase maps these signal intensities into cell
functionalities (i.e. at step 5 of the algorithm shown in table 6.1).

6.4 Scalability

The scalability of the morphogenetic system is assessed and compared to a direct genetic
encoding by evolving phenotypes of increasing size. Two phenotypes are considered, the
Norwegian flagand theCA-generatedpattern. Phenotype sizes are: 8x8, 16x16, 32x32,
64x64, 96x96, 128x128 and 256x256. TheNorwegian flagis a scaled version of the
8x8 flag. TheCA-generatedpattern is computed using the CA rules from a wider initial
line.2 Therefore its complexity increases. Figure 6.8 illustrates the target patterns for
phenotypes of size 64x64.

The size of genetic string with the direct encoding scales with the size of the array.
The size of the genetic string of the morphogenetic system scales only with the logarithm
(base 2) of the size of the array. The lengths of the genetic strings for the direct coding

2With the exception of the patterns smaller than 32x32 for which the border has a fixed width of one
pixel, theNorwegian flagscales in length with the size of the pattern: the width of the border and the widths
of the crosses inside the flag are proportional to the width of the pattern. The pattern width, the width of the
border, the width of the outer cross (white) and the width of the inner cross (blue) are listed in this order in
the following tuples: (8,1,1,1), (16,1,1,3), (32,1,2,5), (64,2,5,11), (96,3,7,15), (128,4,10,21), (256,8,20,41).
The border of theCA-generatedpattern is always one pixel wide. The first line of this pattern is randomly
generated (each pixel takes randomly one of two colors), and the following lines are computed from the
line above them using cellular automata rule 90.
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Step 12 Step 13 Step 14 Step 15

Figure 6.7: Development of the 64x64Norwegian flag. Each picture represents with gray
levels the type of all the cells expressed in the multi-cellular circuit. Each picture is a taken
after a development step. After 16 steps the development is completed. The top-left picture
shows the type of all the cells of the multi-cellular circuit at the beginning of the develop-
mental process. At this stage most cells (with the exception of those having diffusers) have
signals whose intensities are uninitialized (i.e. the signal intensities correspond to the reset
state of the cell). The evolutionary process yet adapts the expression table so that these cells
express the background color of the flag, which happens to be the most common color in the
target pattern.

Figure 6.8: The patterns used to assess the scalability of the morphogenetic system are the
Norwegian flagand theCA-Generatedpattern, here illustrated with size 64x64.
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Genetic encoding
Phenotype size Direct encoding Morphogenetic system

8x8 128 192
16x16 512 224
32x32 2048 256
64x64 8192 288
96x96 18432 320

128x128 32768 320
256x256 131072 352

Table 6.2: Size of the genetic string in bits for the direct encoding and the morphogenetic
system for the various phenotype sizes.

and the morphogenetic system are listed in table 6.2.

Evolution is performed with the same parameters as in section 6.3 for 2000 genera-
tions and the maximum and average of the maximum fitness scores are measured at the
last generations. Figure 6.9 illustrates the scalability of the direct genetic encoding and
the morphogenetic system. With the largest phenotypes (256x256) the morphogenetic
system achieves a higher fitness than the direct genetic encoding, which indicates that it
scales better than the direct encoding on this problem.

The direct encoding reaches the maximum fitness for arrays up to size 32x32. The
larger search space then limits the fitness scores for larger arrays. The morphogenetic
system achieves lower fitness scores than the direct encoding on the smaller patterns (up
to size 64x64 and 96x96 for theNorwegian flagand theCA-generatedpattern respec-
tively). However with larger phenotypes the morphogenetic system outperforms the direct
encoding with both patterns.

The morphogenetic system tends to exploit the frequency of the colors to maximize
the fitness because it can easily generate large patches of cells with a uniform color. This
happens, even if there are no diffusers, by expressing the most common color when signal
intensities are uninitialized. Indeed even if signals are uninitialized, they still have a
default “reset” value which can be exploited by the evolutionary process to express a
default type of cells. This is illustrated in figure 6.7 at the beginning of development:
except for diffusers cells all have uninitialized signals, yet they all express the background
color of theNorwegian flag, which is the most common color in the target circuit. As
a consequence the morphogenetic system starts with higher maximum fitness than the
direct encoding in the first generation. It achieves a maximum fitness close to 0.5 in
the first generation with theCA-generated patternwhich mostly contains an equivalent
distribution of two colors, even though each cell can take one of 4 different colors. With
theNorwegian flagit expresses by default the background color of the flag because it is
the most frequent color. It then places diffusers on the branches of the flag to generate
locally the correct colors (figure 6.7).

Therefore it is likely that in the worst case the fitness obtained with the morphogenetic
system does not drop below the normalized area that the most common color in the phe-
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Figure 6.9: Scalability of the morphogenetic system and direct encoding when evolving the
Norwegian flagand theCA-generated pattern. The bars indicate the maximum and the av-
erage of the maximum fitness scores measured at the last generations of 20 runs (for the
128x128 and 256x256 pattern 5 runs were done because of the long time required for the
runs to complete). The wider bar indicates the average of the maximum fitness obtained in
each run. The thinner bar indicates the absolute maximum fitness. The morphogenetic system
scales better than the direct encoding on the larger phenotypes.

notype covers, even for larger phenotypes. In comparison the direct genetic encoding
starts with a maximum fitness score that is close to 0.25 because each pixel is randomly
assigned to one of the four possible colors and has a1

4
probability of matching the target

pixel color.
For comparison purposes the number of diffusers (16) remained identical for all the

phenotype sizes. This is not enough diffusers to entirely cover the larger multi-cellular
arrays with signals and fitness may be improved by increasing the number of diffusers.
This is investigated in section 6.6.

In summary, the morphogenetic system scales better than the direct encoding when
increasing the size of the target phenotype.

6.5 Fault-tolerance

In this section we show that the dynamics of development may be exploited to provide
fault-tolerance to evolved patterns of cells.

We consider transient events that damage the state of the cell. This can happen for
instance when radiations corrupt memory elements. We assume that development contin-
ues to operate normally. In this case the cell functionality may be recovered. We assume
that the necessary circuitry is available to detect corrupted states (e.g. by doing periodical
checksums of the cell’s memories) and that a reset of the cell ensues in such cases. There-
fore in case of fault all the variables describing the state of the cell take the default reset
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value. The cell forgets whether it was diffusing signals, and all the signal intensities are
flagged as uninitialized. Here we show how the intrinsic dynamics of the morphogenetic
system can recover the cell functionality after a reset, not actually on how to design the
fault detection mechanism.

The state of a cell depends on the expression table and on the signal intensities. Both
are be stored in memories, and thus they may both be disrupted by faults. The expres-
sion table is part of the genome and it is identical in all cells. Therefore circuitry can be
designed to recover the expression table from neighboring cells with a majority voting
scheme. Hence we consider that such a fault can always be recovered, as long as at least
one cell is intact in the system. The signal intensities however do differ in each cell, so
they cannot be recovered in the same way. Nonetheless, there is a strong relationship be-
tween signal intensities in neighboring cells as the signal intensities decrease linearly with
the Manhattan distance to the diffusers. Therefore signal intensities can be approximately
reconstructed from the neighborhood.

To predict the signal in a cell from that of its neighbors the morphogenetic system is
slightly modified. Instead of setting a signal by taking the value of the first initialized sig-
nal in a neighboring cell decremented by one, the diffusion rules assign the smallest value
for which the signal gradient with all the initialized neighbors is -1, 0 or 1. This gives
the same result as the original rules in fault-free conditions but allows better recovery in
case of faults. Recovery is not always possible as there are cases where this rule does not
predict correctly the signal intensities, in particular when faults occur on diffusers. Figure
6.10 illustrates what happens when the multi-cellular circuit is subject to three faults. One
of the fault occurs on a diffuser and cannot be recovered correctly. The two other faults
can however be recovered with the gradient rule given above.

Fault tolerance in the morphogenetic system is compared to a direct genetic encoding.
The direct encoding is not capable of fault-tolerance, but it serves to highlight the benefits
of the dynamics of the developmental system. A fault alters randomly the color of a pixel
in the case of the direct encoding.

To ensure that fault-tolerance is provided by the developmental process and not by
evolution, individuals are evolved in fault-free conditions before being tested. The best
evolved phenotype of the Norwegian flag on the 64x64 array is used for testing. This pat-
tern and size is selected because the fitness of the morphogenetic system and of the direct
encoding are very similar and higher than the trivial solution consisting of exploiting only
the frequency of colors (the fitness would be 0.37 if the morphogenetic system initialized
all the cells with the most common color). The damage rate (percentage of faulty cells)
is varied between 0% and 100%. The damage process is repeated 100 times for each
damage rate on the same evolved, fault-free phenotype.

Figure 6.11 illustrates the results. While the direct encoding is subject to a linear
decrease in fitness, the morphogenetic system shows a superior resistance to faults. The
morphogenetic system benefits from the fact that signal intensities vary with continuity
and can be easily reconstructed. Also, evolution assigns the most frequent color of the
target pattern to the default cell type, which explains the fitness value of 0.37 with 100% of
faults. A fitness of 0.25 is obtained in this case with the direct genetic encoding, because
pixels are assigned randomly one of the four possible colours.
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Figure 6.10: Example of faults occurring in the multi-cellular circuit. The numbers inside the
cells indicate the intensity of the signal in hexadecimal. Cells in gray represent diffusers. The
left array represents the evolved, functional, circuit. The middle array represents the signal in
the cells once faults occur. Here faults occur in three cells (represented by the cross). As a
consequence these cells are reset: the signal intensities are reset and the cell forgets whether
it was a diffuser. The right array represents the recovered circuit after a developmental step.
The signal in the top faulty cell is recovered from the neighbors which are E, E, E and E.
The diffusion rules assign the smallest signal value for which the signal gradient with all the
neighboring cells is -1, 0 or 1. Signals which respect this gradient rule are D (gradient of -1
with E), E (gradient of 0) or F (gradient of 1). The smallest signal is D which is thus the value
recovered in the cell. In this case the recovery is incorrect because the signal was originally F.
However in the two other faulty cells recovery is possible. The bottom left faulty cell sees the
neighboring signals C, C and E. The signal respecting the gradient rule is the signal D which
has a gradient of 1 with signal C, and -1 with signal E. No other signal intensity satisfies the
gradient criteria. The bottom right faulty cell sees the neighboring signals C, C and D. The
only signal that respect the gradient rule is signal C which has a gradient of 0 with neighboring
signal C, and gradient -1 with signal D.
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Figure 6.11: Fitness obtained on theNorwegian flag(size 64x64) with the direct genetic
encoding and with the morphogenetic system after recovery from different fault rates.
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Figure 6.12: Recovery of the 64x64Norwegian flagafter 95% of faults. The first picture
is the evolved pattern. The second shows the pattern after damage. The remaining pictures
illustrate the pattern after each additional developmental step.

Figure 6.12 illustrates the recovery after a fault in the case of the evolved 64x64Nor-
wegian flag(95% of faults). The first picture shows the evolved pattern, the second shows
the pattern after the faults occur, and the remaining pictures are snapshot of the pattern
after each additional developmental step.

Figure 6.13 illustrates the 64x64Norwegian flagrecovered from different fault rates.
The recovered pattern is very similar to the original one up to high fault rates.

6.6 Analysis

In this section we investigate the performance of the morphogenetic system at generating
specific 2D phenotypes in function of the number of diffusers and the number of signal
types. We then compare one morphological characteristic of phenotypes obtained with
the morphogenetic system and the direct encoding, which is the size of connected areas
of identical colors. Finally we do a preliminary analysis of the fitness landscape gener-
ated by the morphogenetic system. An analysis of the influence of the parameters of the
morphogenetic system on the phenotypic complexity is given in appendix C.

Unless otherwise noted the fitness function, target patterns, genetic algorithm param-
eters and morphogenetic system parameters are the same as those used in section 6.3 and
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Figure 6.13: Patterns recovered by development with different fault rates in the case of the
evolved 64x64Norwegian flag.

6.4.

6.6.1 Number of diffusers

Diffusers affect a limited area of the phenotype around their position (a 31x31 diamond
centered on the diffuser). Therefore larger phenotypes tend to require more diffusers so
that all the cells of the system have the chance to receive the required signal intensities
to express the correct functionality, as illustrated in figure 6.14. Results presented in the
figure are 10-run averages for all the pattern sizes, except for the 64x64 pattern for which
the results are 5-run averages. In the latter case further runs may be required to ensure
statistical significance.

The influence of the number of diffusers in relation with the phenotype size is espe-
cially visible in the case of the checkerboard pattern: with a single diffuser the maximum
fitness is reached for patterns up to size of 16x16. With larger patterns the fitness de-
creases because diffusers do not manage to set the signals in all the cells.

The combination of signals allows the expression of complex or irregular patterns.
With no diffusers or when sufficiently far from them, cells all express the same default
functionality (i.e. signal intensities are all to the default value). With more diffusers more
complex phenotypes can be expressed. This is evidenced in the case of themixed 2, the
CA-generatedand theNorwegian flagpatterns: by increasing the number of diffusers
the phenotypes generated by the morphogenetic system match more closely the target
structures.

Although adding more diffusers increases the size of the genetic string, the morpho-
genetic system does not seem to show the degradation of performance typically associated
with larger search spaces.

In summary the required number of diffusers should be selected according to the phe-
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notype size and the structure of the target patterns, but selecting a high number of diffusers
seems to be a safe choice in these experiments.

6.6.2 Number of signal types

In the previous sections the morphogenetic system used four types of signals. The number
of signal types affects the maximum number of functionalities which can be expressed
by the morphogenetic system. Withn signal types, each encoded onm bits, there are
2n·m possible states of signals in cells and therefore up to2n·m different functions can be
expressed.

Empirical tests showed that 4 signal types, which are encoded on 4 bits, are adequate
for the applications described in this chapter. This corresponds to a maximum of24·4 =
65536 different functionalities which is more than the number of functionalities which
are actually used. Therefore several combinations of signals may express the same cell
functionalities.

Adding more signal types has little influence on the performance of the morphogenetic
coding in these experiments, as illustrated by figure 6.15 which shows the fitness scores
obtained after evolving theCA-generatedpattern with different number of signal types.
Results presented in the figure are 5-run averages.3 Results obtained with the evolution of
other target patterns are similar.

While the minimum number of signal types should allow the expression of all the
functionalities required in the system, selecting a too high number of signal types does
not seem to affect the performance of the morphogenetic system, even if this increases the
size of the search space. There is however an influence on the phenotypic complexity of
the number of signals when the number of diffusers is changed. This aspect is discussed
in appendix C.

6.6.3 Morphological characteristics

The morphogenetic system tends to generate random phenotypes that display larger con-
nected areas of cells of identical functionalities than a direct encoding (figure 6.16).

We assess this by generating 100 random 8x8 binary phenotypes with a direct genetic
encoding and the morphogenetic system (16 diffusers, 2 functionalities, 4 signal types).
For each phenotype, we detect connected areas of cells of identical functionalities4 and
we measure the size of all the connected areas. From this we estimate the probability for
a cell to belong to a connected area in function of the size of the connected area (figure
6.17).

3Although more runs may be required to ensure statistical significance, the standard deviation on 5 runs
of the maximum fitness scores reached at generation 2000 is very small (< 0.007). This tends to indicate
that the results are likely to be similar with more runs.

4We consider two cells of identical color to be connected if they touch along the horizontal or vertical
axis.



6.6. ANALYSIS 85

Figure 6.14: Influence of the number of diffusers on the maximum and average fitness ob-
tained after 2000 generations. The number of signal types is 4. The bars represent the average
and the maximum of the maximum fitness obtained in 5 runs. With larger or more complex
phenotypes, increasing the number of diffusers allows to increase the maximum fitness score.
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Figure 6.15: Influence of the number of signals on the fitness which is obtained after 2000
generations when evolving theCA-generatedpattern. The bars represent the average and the
maximum of the maximum fitness obtained in 5 runs. The number of diffusers is always 16.
Note that changing the number of type of signals has little influence on the fitness which is
obtained.

Figure 6.16: Randomly generated 16x16 phenotypes with the direct encoding (top line) and
the morphogenetic system (bottom line). Each cell can take one of two functionalities (black
or white cell). The direct genetic encoding assigns one bit per cell. The morphogenetic system
uses a family of 2 functionalities, 16 diffusers, and 4 signal types. The genetic string of the
multi-cellular system is randomly generated in both case. Phenotypes generated with the mor-
phogenetic system tend to display larger connected areas of cells of identical functionalities
(colors).
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Figure 6.17: Probability for a cell to belong to a connected area of cells of identical func-
tionalities in function of the size of the area. With the morphogenetic system, cells tend to
belong more to areas of size 1 than with the direct coding; and cells also belong more to areas
of larger size (30 and more cells), at the expense of areas of size in the range 2 to 20.

In comparison to the direct genetic encoding, cells tend to belong more to larger con-
nected areas and less to smaller ones with the morphogenetic system. By generating large
connected areas of identical cells the morphogenetic system may easily achieve a fitness
which is equal to the proportion of the most common cell color in the circuit. This may
explain why the morphogenetic system evolved very easily phenotypes to resemble e.g.
theuniformpattern in section 6.3.

6.6.4 Fitness landscape

The ruggedness of the fitness landscape is often linked to the evolutionary search difficulty
[147]. The ruggedness is investigated by performing random walks using the mutation
operator starting from points of maximum fitness on the evolved 64x64Norwegian flag.
The genetic encoding and mutation rate are the same as used during evolution in section
6.4. Taking the best evolved individuals, 3000 random walks of 30 steps are performed
with the morphogenetic system and the direct genetic encoding. Figure 6.18 shows that
the fitness drops faster with the morphogenetic system when moving away from a point
of maximum fitness, which seems to imply a more rugged fitness landscape in the case of
the morphogenetic system. The better performance of the morphogenetic system observed
in previous experiments thus does not seem to come from a smoother fitness landscape.
This may imply that the morphogenetic system benefits essentially from its smaller search
space size in comparison to the direct genetic encoding.

We considered the ruggedness according to the mutation operator, however one-point
crossover is also used during evolutionary search. Therefore the ruggedness measured
here is an approximation of the effective ruggedness seen during evolutionary search.
Ruggedness may be further investigated by considering an alternative view where the
search space is a connected graph whose vertices are crossed through the action of the
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Figure 6.18: Comparison of random walks performed on the evolved 64x64Norwegian flag.
The fitness drops faster with the morphogenetic system when moving away from points of
maximum fitness. This seems to indicate that the fitness landscape is more rugged with the
morphogenetic system.

search operators. Each operator defines its landscape and thus an evolutionary algorithm
makes transitions on a mutation, a crossover and a selection landscape [77]. This view
may allow to measure ruggedness according to other search operators (e.g. one-point
crossover). It is however more difficult to interpret [147] and for this reason it was not
considered here.

6.7 Hardware implementation

In this section we describe how the morphogenetic system fits in the cell architecture in-
troduced in chapter 4, and we implement the morphogenetic system on the POEtic chip.
The hardware implementation behaves identically to the software simulations and there-
fore it achieves the same performance in terms of evolvability and scalability as indicated
in previous sections. The implementation however does not use the fault tolerant rules of
the morphogenetic system (section 6.5), since these translate in a larger implementation.
We do not consider the implementation of any cell functionality; this is done in chapter 7.

In chapter 4 we introduced the notion of cells composed of three layers: the phenotype
layer which is the functional part of the cell, the mapping layer where development is
implemented, and the genotype layer which contains the genetic code of the entire multi-
cellular circuit (figure 6.19 left).

The morphogenetic system maps the genetic string of the circuit into the circuit func-
tionality. It therefore belongs to the mapping layer of the cells. We refer to the hardware
implementation of the morphogenetic system in a cell as amorphogenetic element.

The morphogenetic element is illustrated in figure 6.19 (right). It is connected to its
four immediate neighbors to receive their signal intensities (inputs In 0 to In 3 in the
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Figure 6.19: Cells of POEtic circuits are composed of three layers: phenotype, mapping and
genotype (left). The morphogenetic system maps the genetic string of the circuit into a cell
functionality and belongs to the mapping layer of the cell. The hardware implementation of
the morphogenetic system in the cell is referred to as the morphogenetic element (right). The
morphogenetic element has inputs (In 0 to In 3) and an output to exchange signal intensities
with its neighbors. It has a function output which indicates what is the functionality that
the phenotype layer of the cell must take within the family of predefined functionalities. In
the three-layered structure this function output is sent to the phenotype layer of the cell, as
indicated on the left by the arrow pointing upwards.

figure). It has one output, which is connected to its neighbors and through which the mor-
phogenetic element sends its own signal intensities. Finally the morphogenetic element
has a function output, which indicates to the phenotype layer of the cell which functional-
ity it must take within the predefined family of functionalities required for evolution with
the morphogenetic system.

In this implementation the morphogenetic element is designed to handle 4 entries in
the expression table (i.e. there may be a maximum of 4 different cell functionalities) and
the number of signal types is 4. This corresponds to the settings used earlier in this chapter
to evolve structures of differentiated cells (e.g. in section 6.3).

The implementation on the POEtic chip requires to configure the molecules of the
chip to execute the algorithm of the morphogenetic system described in section 6.2. The
result of the implementation is illustrated in figure 6.20 which shows the molecules of the
POEtic chip that implement the morphogenetic element. In total 56 molecules are used.
The hardware implementation allows relatively fast development since a developmental
step requires 256 clock cycles and therefore complete development, which requires 16
developmental steps, takes 4096 clock cycles. In contrast to a software implementation,
this time is independent of the size of the multi-cellular circuit. The implementation is
detailed in appendix D.

6.8 Discussion

Combining a genetic encoding with a developmental system in an evolutionary system
may provide dynamic reorganization capabilities to POEtic circuits. For instance reorga-
nization may occur when the circuit is expanded with new cells, when the environment
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Figure 6.20: Implementation of the morphogenetic element with the molecules of the POEtic
chip. 56 molecules are required to implement the morphogenetic element. The morphogenetic
element receives the signals of its north, east, south and west neighbors using the 4 inputs
which are connected using the dynamic routing mechanism of the POEtic chip. The output
sends the signal values to neighboring morphogenetic elements in the same way. The function
output indicates the functionality that the cell must take.

changes, or when sensors or actuators are connected to the circuit. Direct genetic encod-
ings are not suited for this, because the number of cells in the system must be known
in advance and the genotype to phenotype mapping is static. With the morphogenetic
system, a cell newly connected to the circuit would differentiate according to the signals
emitted from its neighbors. Dynamic reorganization may be mediated by “chemicals” (i.e.
signals produced by diffusers) injected in the multi-cellular circuit from the environment
or special cells (e.g. sensors or actuators). However, the capacity of the morphogenetic
system to provide a meaningful functionality to cells dynamically added to the circuit,
together with dynamic reorganization of POEtic circuits at the level of the morphogenetic
system, have not yet been investigated.

According to Streichert et al. multi-cellular systems that grow and differentiate ac-
cording to a developmental program may rely onexogenousstructuring factors (i.e. struc-
turing factors or chemicals are provided to the multi-cellular system from the outside),
or they may emerge purely fromendogenousself-organization (i.e. the “cell program”
controls the growth and differentiation without external intervention) [155]. The mor-
phogenetic system is based on exogenous structuring factors which are the diffusers.
Diffusers are similar tomorphogens, the chemicals which convey positional information
in the development of biological organisms [188]. This approach has one disadvantage
which is that the number of diffusers must be increased when the size or complexity of
the phenotype increases (see section 6.6), which in turns increases the size of the genetic
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string. However this approach has the advantage that diffusers can be placed locally in
areas of higher complexity in the phenotype. An endogenous approach on the other hand
needs to encode the entire phenotype in a cell program of limited size, and this may also
place a limit on the size or complexity of the phenotypes which can be encoded in this
way.

The morphogenetic system partly adapts the expression of cell types to the phenotype
statistics. This occurs through evolution of the expression table. The expression table
assigns a functionality to all the cells, even if they have no signals yet initialized (e.g. at
the beginning of the development, or when a cell is too far from any diffuser). Evolution
exploits this to assign the most common cell type to cells with uninitialized signals. This
is evident in the evolution of phenotypes to resemble specific 2D patterns. Evolution tends
to assign the most common color (e.g. the background of theNorwegian flag) to unini-
tialized cells and further refinement is modulated by the diffusers. The morphogenetic
system benefits from this when evolving patterns, since in the first generation it may al-
ready find individuals whose fitness is close to the proportion of the most common cell
type (direct encodings achieve a fitness close to1

n
wheren is the number of cell types).

The morphogenetic system also benefits from this in the fault tolerance task, where cells
express by default the most common color of the pattern even at high fault rates.

The morphogenetic system employs hard-coded signaling and expression mechanisms
that tend to generate diamond-shaped patterns (figure 6.7). This may limit the maximum
fitness that can be achieved by the morphogenetic system. However these hard-coded
mechanisms are also one of the reason for the simplicity of the morphogenetic system.
More general developmental systems use an evolved cell program that controls the pro-
duction of chemicals and the differentiation of cells [32, 117], but these may translate in
more complex implementations.

The morphogenetic system has been optimized for low computational complexity. It
does not use multiplications, divisions, nor floating point operations. The signaling and
expression mechanisms can be implemented with increments, decrements, logic opera-
tions and comparisons. In a software implementation, development and evaluation of the
fitness of an 8x8 phenotype with a family of 4 functionalities (experiments of section
6.3) proceeds at the speed of approximately 10000 individuals/sec on a 2.08GHz AMD
Athlon XP CPU. The speed scales down with the size of the phenotypes: phenotypes
of size 64x64 are evaluated at 90 individuals/second. As a reference, a direct encoding
evaluates 60000 individuals/sec with an 8x8 phenotype.

In comparison, the artificial embryogeny of Federici [35], which relies on a neural
network controlling the growth of a multi-cellular system, achieves approximately 1000
individuals/sec in the same experiment with an 8x8 phenotype [36]. While that develop-
mental system is slower than the morphogenetic system, it is more biologically plausible
as development starts from a single cell and cell growth or death is physically located (i.e.
cell duplication “pushes” neighboring cells). Still, on a common task, the scalability and
fault-tolerance of the artificial embryogeny and of the morphogenetic system showed to
be similar [134]. Therefore the morphogenetic system fulfills its objective of low compu-
tational complexity and at the same time it performs well compared to a more complex
developmental system.
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The low computational complexity of the morphogenetic system allows a compact
hardware implementation on the POEtic chip. According to the terminology introduced
in chapter 3, the hardware implementation of the morphogenetic system is an intrinsic,
online and cellular implementation. The cellular implementation of the morphogenetic
system is fast and possibly more robust than centralized sequential implementations such
as those done in specialized hardware or in software. In particular, development time is
constant regardless of the number of cells in the system. Online development is however
exploited only in the software model where we showed that it may bring fault-tolerance.
The hardware implementation does not take advantage of online development since the
fault-tolerant diffusion rules are not yet used. The hardware applicability of these rules
remains the object of future work.

The results obtained in software regarding fault-tolerance bear some similarities with
those shown by Miller [117] and Federici [134]. The major difference is that fault-
tolerance is provided to the morphogenetic system bydesign(i.e. the fault-tolerant diffu-
sion rules are designed to approximate the signal intensities in a cell based on the signal
intensities of neighboring cells), whereas in Miller’s and Federici’s work fault-tolerance is
emergent. In the latter case the evolved cell program controlling development is capable
of growing cells to replace faulty ones without explicit evolutionary pressure to this end.

The morphogenetic system currently does not allow variable diffusion ranges, and it
relies on predefined cell functionalities which are not evolved. Future work may consider
improvements in these aspects. Variable diffusion ranges may allow more efficient evo-
lution of phenotypic structures by letting long range signals shape large structures while
signals of shorter range take care of local details. The cell functionalities may be encoded
in the genetic string of the circuit so that new functionalities can be created or modified
by the evolutionary process. We showed that the parameters of the morphogenetic system
(number of diffusers or number of signal types) have an influence on the fitness which can
be obtained. Since selecting the appropriate parameters may be a difficult task, evolution
may be used to adapt the number of diffusers or signal types to the size and complexity
of the target phenotype.

6.9 Summary

In this chapter we introduced a minimalist developmental system and genetic encoding
suited for multi-cellular systems such as POEtic circuits. We called this system the mor-
phogenetic system. The morphogenetic system is inspired by gene expression and cellular
differentiation. It can be implemented in a fully distributed way, and it assumes only lo-
cal communication between immediate neighboring cells, which allows it to be applied
to circuits regardless of their size. In addition it achieves low computational complexity
which makes it suited for compact hardware implementation. In particular it does not use
multiplications, divisions, nor floating point operations.

We found that the morphogenetic system was capable of evolving patterns of diver-
sified structures with relatively high fitness scores, and that in terms of fitness it scaled
better to larger phenotypes than a direct genetic encoding on the patterns which were
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considered. According to the classification introduced in chapter 3, the morphogenetic
system is capable ofonline development. We showed in software that online develop-
ment allows to recover from faults up to high fault rates by exploiting the dynamics of the
developmental system.

Finally we showed that the morphogenetic system is well suited for hardware imple-
mentation on the POEtic chip. It uses very few resources (only 56 molecules), and allows
development at relatively high speed in constant time (4096 clock cycles), regardless of
the size of the circuit.

In conclusion we demonstrated that the morphogenetic system could be used to evolve
structures of differentiated cells, although we did not yet consider cells with a real func-
tionality other than a color. In the following chapters we will demonstrate that the mor-
phogenetic system can be used to evolve functional multi-cellular circuits for various
applications.
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7 Evolutionary morphogenesis of
spiking networks

Abstract1

In the previous chapter we introduced the morphogenetic system and we showed that
it could evolve structures of differentiated cells. Yet these structures did not have any
functionality. In this chapter we demonstrate that the morphogenetic system can be used
to evolve functional circuits. We evolve multi-cellular spiking neural networks to perform
pattern recognition and to control a mobile robot in a task of obstacle avoidance. The
multi-cellular spiking controller is implemented on a FPGA embedded on the mobile
robot. We find that the morphogenetic system outperforms a direct genetic encoding
when evolving these multi-cellular spiking neural networks.

7.1 Introduction

In the previous chapter we introduced the morphogenetic system and we showed that it
could evolve structures of differentiated cells. Yet these structures did not have any func-
tionality. The objective of this chapter is to demonstrate that the morphogenetic system
can be used to evolve functional circuits.

In chapter 2 we evidenced the problem of scalability in evolvable hardware and we
suggested to evolve circuits composed of high-level functional blocks that can process
analog values, since analog circuits seem to have smoother fitness landscapes.

For this reason we consider here multi-cellular circuits whose cells implement spiking
neurons. Spiking neurons model biological neurons that exchange information by short
binary events called action potentials, or spikes, which are sent through their axon to
connected neurons [49, 105].

Spiking neurons are high-level functional blocks in comparison to the elementary
logic gates often used in evolvable hardware. Furthermore they exchange binary spikes,
which match digital hardware, but they may encode analog information in the temporal

1Part of this work was published in [135, 136]. Stéphane Hofmann contributed by developing the FPGA
module for the Khepera robot during his master project under my supervision.
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patterns of spikes. Spiking neurons are suited for efficient analog implementations [74],
or fast digital implementations [61, 143], and they may be optimized for use with limited
resources [43, 171]. Furthermore their computational power is at least identical to that of
multilayer perceptrons and sigmoidal networks and in some cases greater [106, 141].

Spiking neurons have been used previously as controllers in evolutionary robotics,
e.g. to perform vision-based obstacle avoidance [40, 43] and phototaxis [29].

In this chapter we thus consider the evolutionary morphogenesis of multi-cellular cir-
cuits composed of spiking neurons. We evolve these circuits to perform pattern recogni-
tion, and to control the navigation of a robot in a task of obstacle avoidance. Evolution
with the morphogenetic system is compared with a direct genetic encoding.

The experiments described in this chapter are done in a software simulation of the
multi-cellular circuit. The robot controller is however later implemented in hardware on
a FPGA. This demonstrates that the spiking neuron model is suited for multi-cellular
hardware implementation. The hardware implementation behaves in the same way as the
software simulation. Therefore the controllers evolved in simulation can be transferred
seamlessly to the hardware controller.

This chapter is organized as follows. Section 7.2 introduces the neural model which is
used in subsequent applications. Section 7.3 describes the evolutionary morphogenesis of
spiking neural networks to do pattern recogition. Section 7.4 describes the evolutionary
morphogenesis of the robot controller. Section 7.5 describes the the hardware implemen-
tation of the robot controller. The results are discussed in section 7.6 before concluding
in section 7.7.

7.2 Evolution of multi-cellular spiking neural networks

In order to evolve multi-cellular spiking neural networks with the morphogenetic system,
we assume that a cell of the multi-cellular circuit can implement the functionality of a
spiking neuron.

The spiking neuron model used in the following experiments is a discrete-time,
integrate-and-fire model with leakage and a refractory period. Each neuron has weighted
inputs (+2 or -2 depending on whether the presynaptic neuron is excitatory or inhibitory)
from connected neurons, according to the connectivity patterns shown in figure 7.1. It has
one more connection from an external input, e.g. to connect a sensor, with fixed weight
of +10. The neuron integrates the incoming spikes in the membrane potential, accord-
ing to the weights of the connections. Once the membrane potential reaches a threshold
(fixed to 4), the neuron fires (emits a spike), resets its membrane potential to 0 and enters
a refractory period where it does not integrate incoming spikes for one time step. After
the integration phase and if the neuron has not fired, leakage decrements the membrane
potential by 1 (or increments it if the potential is below 0), so that the asymptotic potential
is 0. Figure 7.2 shows the effect of incoming spikes on the membrane potential.

The main characteristic of this model compared to others is that few computations are
needed to update the neuron state at each network step (e.g. no multiplications or expo-
nentials). This neural model has been previously implemented on a microcontroller with



7.2. EVOLUTION OF MULTI-CELLULAR SPIKING NEURAL NETWORKS 97

F0 F1 F2

F3 F4

F5

Figure 7.1: A family composed of 12 functions is used when evolving neural networks.
The functions are spiking neurons with different connectivities (the 6 connectivities shown
in the figure) and with either excitatory or inhibitory characteristics. Each cell of the multi-
cellular circuit implements a single neuron, shown in gray. It receives inputs from neighboring
neurons (outlined), which are implemented in neighboring cells. Each neuron has an extra
external input (curved arrow). NeuronF5 is equivalent to a void cell. At the boundary of the
cellular array the connectivity is truncated (no periodic boundary condition).

only 60 bytes of RAM [43] and it is well suited for compact hardware implementation
(see section 7.5).

The family of functionalities required by the morphogenetic system consists of neu-
rons with different patterns of incoming connections, and either excitatory or inhibitory
characteristics. The interconnections among spiking neurons are considered as part of the
cell functionalities. The family of functionalities is illustrated in figure 7.1. In these exper-
iments there are 12 different functionalities that can describe a large number of complex
and recurrent neural architectures, depending on the circuit size and genetic code. The
expression table of the morphogenetic system therefore contains 12 entries.

Table 7.1 indicates the parameters of the morphogenetic system and of the genetic
algorithm. The size of the genetic string with the morphogenetic system is 320 bits: 12
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Figure 7.2: Effect of incoming spikes on the membrane potential. Each time a spike is
received the membrane potential is increased. When a threshold (dashed line) is reached the
neuron emits a spike (gray column) and the potential is reset to 0.
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GA parameters Genetic coding
Population: 50 Coding: morphogenetic system
Crossover: 20% Diffusers: 16
Mutation: 0.5% Expression table: 12 entries
Selection: rank (15 best selected) Chromosome size: 320 bits
Elitism: 5 individuals are copied unchanged

Table 7.1: Parameters of the genetic algorithm and of the morphogenetic system.

entries in the expression table * 16 bits + 16 diffusers * 8 bits (6 bits for the coordinates
and 2 bits for the type of diffuser).

In the following sections evolution with the morphogenetic system is compared with a
direct genetic encoding. The parameters of the genetic algorithm are the same as with the
morphogenetic system. The functionality of each cells is encoded by 4 bits, and therefore
the size of the genetic string with the direct encoding is 256 bits (4 bits/cells * 64 cells).

7.3 Pattern recognition

The circuit of 8x8 neurons illustrated in figure 7.3 is evolved to recognize characters (any
other pattern could be used) using two training sets: one set contains corrupted versions
of two characters, the other set contains random patterns which have on average the same
percentage of black pixels as the characters. The circuit must tell whether the current
pattern is one of the two characters or not by raising the firing rate of one specific neuron
in the circuit. The input pattern is applied on a subset of the neurons through their external
input. Each neuron receives one pixel of the pattern: if the pixel is black it receives one
spike every two time steps, otherwise it receives no spikes. The network is run for 100
time steps with the input applied to it, afterward the activity of the output neuron is read.
The activity (number of spikes) of that neuron indicates whether the input pattern is a
character (threshold=50% of maximum spike number).

Bottom of figure 7.3 shows the training set for the recognition of the characters A
and C (noted as A+C). The upper line shows the subset of patterns to recognize. The
second line contains random patterns that must be rejected. The fitness of the network is
evaluated by presenting successively all the patterns of the training set. The fitness score
is the number of times the network correctly classifies the input pattern. The maximum
normalized fitness is 1, corresponding to the successful classification of the 20 patterns in
the training set. The experiments are performed with four different training sets, for the
recognition of characters A+B, A+C, A+D and A+E.

The circuit is evolved one hundred times for each of the four training sets. Figure
7.4 shows the evolution of the fitness. The morphogenetic system outperforms the direct
coding, both when comparing the maximum fitness reached at a given generation and
when comparing the number of runs that have reached the maximum fitness after 50
generations. Table 7.2 reports the number of runs (on the 100 runs performed) where
the maximum fitness is reached. Averaged over the four training sets, runs reaching the
maximum fitness with the morphogenetic encoding are more than the double than with
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Figure 7.3: Top: spiking network doing pattern recognition. The input pattern is applied
on an array of 7x8 neurons on the left of the network. Each neuron receives the input from
one pixel of the pattern. The activity of the output neuron indicates whether a character is
recognized. Bottom: training set for the recognition of the patterns A and C. It is composed
of 20 patterns. The upper 10 are the patterns to recognize which are the letters A and C. The
lower 10 are random patterns that the network must reject.

the direct encoding.
The capacity of the evolved networks to generalize to unseen examples is tested with

two sets of generalization patterns each composed of 125 patterns. The first set contains
corrupted versions of the two characters that where used during training. The other set
contains 4 corrupted versions of all the characters in the alphabet with the exception of
the two that must be recognized (i.e. in total4 · 24 = 96 patterns) and 29 random patterns
which have on average the same percentage of black pixels as the characters. The gener-
alization performance is measured by presenting each pattern successively to a circuit and
looking whether it correctly classifies the pattern: patterns of the first set should be de-
tected as being the characters used during training, whereas patterns of the second training
set should be rejected. The generalization performance is measured on the best evolved
circuits of each run and averaged (see table 7.3). Results indicate that circuits evolved
with the direct encoding and the morphogenetic system are capable of a moderate degree
of generalization.

7.4 Robot controller

A spiking network is evolved as a controller for the two-wheel differential drive miniature
mobile robot Khepera [120]. The objective is to navigate while avoiding obstacles using
the information coming from the proximity sensors of the robot.



100 EVOLUTIONARY MORPHOGENESIS OF SPIKING NETWORKS

0 10 20 30 40 50
0

0.5

1

Generation

F
itn

es
s

Pattern A+B

Direct coding       
Morphogenetic system

0 10 20 30 40 50
0

0.5

1

Generation

F
itn

es
s

Pattern A+C

Direct coding       
Morphogenetic system

0 10 20 30 40 50
0

0.5

1

Generation

F
itn

es
s

Pattern A+D

Direct coding       
Morphogenetic system

0 10 20 30 40 50
0

0.5

1

Generation

F
itn

es
s

Pattern A+E

Direct coding       
Morphogenetic system

Figure 7.4: Evolution of the maximum fitness (average of 100 runs) on the four training sets
of the pattern recognition task.

Training Direct Morph.
A+B 18 27
A+C 8 34
A+D 19 20
A+E 14 54
Total (max 400): 59 135

Table 7.2: Number of runs, out of 100
performed with each training set, reach-
ing the maximum fitness.

Generalization Direct Morph.
A+B 0.67 0.67
A+C 0.56 0.65
A+D 0.67 0.69
A+E 0.60 0.64
Overall: 0.62 0.66

Table 7.3: Proportion of patterns that are
successfully classified in the generaliza-
tion set by the best evolved circuits (av-
erage of the generalization performance
of the best evolved circuits of each of the
100 runs).
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Figure 7.5: The Khepera robot (left) and the neural controller (right). The Khepera has 8
proximity sensors. They are grouped by two, taking value of the most active sensors, to have
4 sensory inputs S0 to S3. The network receives S0 to S3 as sensory inputs. Each input is
mapped to two input neurons (low and high activity indicated in the figure). The neurons ML
and MR control the speed of the wheels according to their activity.

Figure 7.5 illustrates the robot and the neural controller. There are eight input neurons
organized as four sensory groups of two neurons (S0 to S3). These input neurons are
connected to the proximity sensors of the robot. Each group has one “low activity” neuron
and one “high activity” neuron. When farther than about 5 cm from the obstacles, none
of the inputs are stimulated. Between 5 cm and about 1 cm the “low” activity input is
stimulated. When closer both the “low” and “high” activity inputs are stimulated. A
stimulated input receives a spike train of period 2 (one spike every two time steps). An
input which is not stimulated receives a spike train of period 9. Noise is introduced by
varying the period of the input spike trains: the period is randomly increased by one time
step with a 50% probability.

Neurons ML and MR are used to set the speed of the wheels, which is inversely
proportional to their activity. When the neuron does not fire the speed of the wheel is
+80 mm/s. With maximum activity the speed is -80 mm/s. The speed scales linearly in
between. This allows the robot to move forward when no obstacles are sensed and thus
when there is potentially no activity in the network.

The robot has a sensory-motor period of 100ms. During that period, the network
is updated 20 times. At the end of the sensory-motor period, the speed of the wheels
is updated and the proximity sensors are read to compute the spike trains for the next
sensory-motor cycle.

The spiking neuron model used here is the same as that used in the pattern recog-
nition experiment, with the exception that the membrane potential of the neurons is not
allowed to go below zero. This is a simplifications that allows a more efficient hardware
implementation, yet its influence on the performance of evolved networks is minimal.

The fitness of the robot is measured on two tests of 30 seconds in a rectangular arena
(40x65 cm). It is the average of the fitness computed at each sensory-motor step using
the following equation [41]:f = v · (1−∆v) · (1− p) , wherev is the average speed of
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Figure 7.6: Left: Evolution of the best fitness in the obstacle avoidance task (average of 10
runs on a physical robot). Right: Typical trajectory of the robot in the arena.

the two wheels,∆v is the absolute value of the difference of speed of the wheels, andp is
the value of the most active sensor (v, ∆v andp are in the range [0;1]). The three parts of
this function aim to 1) maximize the speed of the robot, 2) minimize the rotation, and 3)
maximize the distance to the obstacles.

The evolutionary parameters are the same as in section 7.3. Ten runs are done with
the morphogenetic system and the direct genetic encoding using the real robot. Figure
7.6, left, illustrates the evolution of the fitness. The morphogenetic system achieves a
higher fitness score than the direct coding. Moreover, after 15 generations, only five runs
manage to find individuals displaying obstacle avoidance behavior with the direct coding,
whereas with the morphogenetic system individuals displaying this behavior are found in
all ten runs. Figure 7.6 (right) shows the typical behavior of a robot in the arena.

During evolution the robot might run into walls. However, since the fitness function
penalizes such behaviors, over time the robot tends to steer away when getting too close
to obstacles. The evolution of a controller (15 generations) takes about 13 hours. The
robot is capable of avoiding obstacles also in different arenas (e.g. square instead of
rectangular) and with various obstacles placed within the arena.

7.5 Hardware implementation of the robot controller

In this section we describe how the multi-cellular spiking neural controller described in
section 7.4 is implemented on a FPGA module embedded on the Khepera robot. A FPGA
module is used rather than the POEtic chip because the POEtic chip is not yet available,
still an implementation on a commercial FPGA allows to estimate the resources required
for an implementation on the POEtic chip.

The FPGA module is an extension module that can be plugged on the Khepera robot.
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Figure 7.7: The FPGA module, here mounted on top of the Khepera robot, is composed of
two circuit boards (or turrets): one for the FPGA and another for the power supply.

When the FPGA module is plugged on the robot, the FPGA can control the robot and
access its sensors. Figure 7.7 illustrates the FPGA module on the Khepera robot.

The FPGA is configured following the structure of the POEtic chip, with anorganic
subsystemthat contains the multi-cellular circuit (i.e. the robot controller described in
section 7.4) and anenvironment subsystemthat executes the genetic algorithm and the
morphogenetic system, and that interfaces the sensors and motors of the robot with the
neurons in the multi-cellular controller (figure 7.8).

The organic subsystem is composed of an array of cells where each cell implements a
spiking neuron. In chapter 4 we introduced the notion of cells composed of three layers:
the phenotype which is the functional part of the cell, the mapping where development
is implemented, and the genotype which contains the genetic code of the entire multi-
cellular circuit (figure 7.9 left).

We already described a circuit composed of cells following this three-layered struc-
ture in chapter 5, and we extensively considered the mapping layer in chapter 6 with the
morphogenetic system. For this reason we focus in this section on the implementation
of the phenotype layer of the cells which is the spiking neuron. The genotype and map-
ping layers arevirtually implemented in software in the processor of the environment
subsystem.

Figure 7.9 (right) illustrates the functional part of the cell and how it fits in the three-
layered structure. The functional part of the cell has inputs, which are used to receive
incoming spikes from neighboring cells, and outputs, which are used to send spikes to
neighboring cells. In addition the cell has a function input which indicates the function-
ality that the spiking neuron has to take within the family of functionalities defined for
the morphogenetic system. The function input allows to select an excitatory or inhibitory
neuron with various connectivity patterns, as explained in section 7.2.

To allow the cell functionality to change with the function input, hardware dictates
that cells must be totipotent. This means that they must implement all the functionalities
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Figure 7.8: The FPGA is configured to implement the multi-cellular robot controller with a
structure similar to the POEtic chip, with an organic subsystem and an environment subsys-
tem. The organic subsystem contains the multi-cellular spiking network. Each cell therefore
implements a spiking neuron. The environment subsystem consists of a processor that runs
the genetic algorithm and the morphogenetic system and that communicates with the Khepera
robot to set the motor speeds and read its sensors. In addition the processor sets the inputs of
the sensory neurons in the spiking network and reads the output of the motor neurons. This
is done via a hardware spike generator unit (that sends spike trains to neurons of the network)
and an activity measurement unit (that gives the average activity of neurons of the network).
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Figure 7.9: Cells of POEtic circuits are composed of three layers: phenotype, mapping and
genotype (left). The phenotype layer (indicated in gray) implements the functionality of a
spiking neuron (right). Cells have inputs and outputs to exchange spikes with neighboring
cells. In addition, since the functionality of the cell must change at run-time when the genetic
string of the circuit changes, cells have a function input that indicates which type of spiking
neuron the cell must implement, according to the family of predefined functionalities. In
the three-layered structure of the cell this function input comes from the mapping layer, as
indicated on the left by the arrow pointing upwards.

of the function family of the morphogenetic system, and at run-time the appropriate func-
tionality is selected according to the function input. In particular the cells are connected
to all the neighboring cells are required to implement the connectivity patterns described
in figure 7.1.

The function input comes from the mapping layer of the cell. Here the mapping layer
is virtually implemented by the processor in the environment subsystem. The processor
in the environment subsystem executes the evolutionary algorithm and the morphogenetic
system. The genetic string of the circuit is therefore stored in the memory of the processor
and the development of the circuit with the morphogenetic system is done in software.
Once the genetic string is decoded with the morphogenetic system, the processor sets the
function input of all the cells, thereby configuring the multi-cellular circuit according to
the genetic string.

The processor then interfaces the multi-cellular network with the mobile robot. It sets
the inputs and reads the outputs of the multi-cellular network with two a programmable
spike generator and an activity measurement unit. The spike generator is used to send
spike trains to input neurons according to the sensory information of the robot. The
activity measurement unit is used to read the average activity of output neurons to set the
speed of the wheels of the robot. At the same time as the robot moves under the control
of the network, the processor measures the fitness of the robot according to its speed and
sensory readings.

The hardware implementation of the multi-cellular circuit behaves identically to the
software simulation described in section 7.4. Therefore the experimental results obtained
with the hardware model are identical to those obtained with the software model of the
spiking network. In particular the genetic strings of circuits evolved with the software
model may be transferred seamlessly to the hardware implementation and the behavior of
the robot is identical to that obtained with the software model of the circuit.

Results of the implementation show that the network can be updated 1.2 million times
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Direct encoding Morphogenetic system
Training set Fit Std dev Fit Std dev
A+B 0.585 0.039 0.596 0.044
A+C 0.519 0.037 0.607 0.054
A+D 0.611 0.032 0.605 0.043
A+E 0.529 0.048 0.614 0.052

Table 7.4: Fitness and standard deviation of the fitness at the pattern recognition task in a
sample of 5000 randomly generated networks.

per second on the FPGA module. About 98% of the resources of the FPGA are used for
the implementation (8222 logic elements on a total of 8320 that the FPGA contains). The
multi-cellular network takes 5939 logic elements, the remaining logic elements are used
to implement the environment subsystem.

Appendix E describes in more details the FPGA module and the hardware implemen-
tation of the spiking neurons.

7.6 Discussion

In this chapter we evolved multi-cellular circuits composed of spiking neurons with the
morphogenetic system. We found that the morphogenetic system outperformed a direct
genetic encoding when evolving circuits to perform pattern recognition and to control a
robot.

In the case of pattern recognition, the morphogenetic system tends to generate in-
dividuals of higher fitness and with higher standard deviation of the fitness in the first
generation in comparison to a direct encoding (table 7.4). Although the differences are
small, the higher initial fitness and higher standard deviation may explain why the mor-
phogenetic system reaches higher fitness scores than the direct genetic encoding. The
reason why the morphogenetic systems generates individuals of higher fitness in the first
generation is not clear, but it may come from morphological differences between pheno-
types randomly generated by both encodings, such as the one evidenced in section 6.6.3.
We also evidenced in section 6.3 that some phenotypic structures can be easily evolved
with the morphogenetic system (e.g. theuniform, checkerboardandmixed 1patterns).
Similarly, circuits capable of pattern recognition may be easier to evolve with the mor-
phogenetic system. Further statistical investigation with more sets of training patterns
is necessary to determine whether the morphogenetic system consistently outperforms a
direct genetic encoding on this task.

In the case of the robot controller, the morphogenetic system generates large patches
of interconnected excitatory neurons that link sensors to motor neurons, causing a re-
versal of wheel speeds when the robot approaches an obstacle. While the direct genetic
encoding can potentially also achieve this, it seems to be slower at it. In this application
the morphogenetic system may thus exploit its capacity to generate larger structures of
identical cell functionalities in comparison to the direct encoding (section 6.6.3).
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The multi-cellular implementation of the robot controller on the FPGA module al-
lows to estimate the resources required for an implementation in the POEtic chip. The
elementary logic units of the POEtic chip (molecules) and of the FPGA (logic elements)
are both based on a 16-bit look-up table (LUT) which can be configured as two 3-input
LUTs to implement efficiently arithmetic operations. Assuming that a logic element of
the FPGA is roughly similar to a molecule, about 6000 molecules are required for the
implementation of this circuit in the POEtic chip.

The implementation of the multi-cellular circuit on the POEtic chip may however ben-
efits from features of the chip. The dynamic routing mechanism of the POEtic chip allows
to build connections between components atrun-time(chapter 4). This feature does not
exist on conventional FPGAs. Therefore the neurons implemented on the FPGA were
connected to all their potential neighbors, and the appropriate connectivity was selected
at run-time. With dynamic routing cells may connect at run-time to the appropriate neigh-
bors and this may reduce the size of the implementation. Furthermore dynamic routing
may be used to evolve new connectivity patterns at run-time. This is not possible with the
implementation described here.

The hardware spiking network achieves a high update speed (1.2 million updates per
second). High update speed can be interesting for example in voice recognition systems
or in character recognition systems for postal addresses where a fast throughput is needed.
In particular the network implemented here may also be used for the task of pattern recog-
nition of section 7.2.

In the robotic application the network is updated every 5 milliseconds only, and there-
fore the hardware implementation is slowed down. Further space optimizations may be
considered such as using bit-serial arithmetics that allows more compact implementation
of arithmetic functions (e.g. additions, comparisons) at the expense of slower execution
speed. Also several neurons may be updated by a single “cell” through time-multiplexing
which may allow to reduce significantly the size of the implementation.

The spiking neuron forms the phenotype layer of the three-layered cells introduced in
chapter 4. The spiking neuron can be combined with the hardware morphogenetic system
introduced in chapter 6 (section 6.7) which forms the mapping layer of the cell. Notably
the function input of the spiking neurons can be connected to the function output of the
morphogenetic elements. Therefore the combination in hardware of the developmental
system provided by the morphgenetic system with the functionality provided by the spik-
ing neurons is only a matter of technical implementation.

7.7 Summary

In this chapter we evolved multi-cellular circuits composed of spiking neurons with the
morphogenetic system. We evolved them to perform pattern recognition and to control
the navigation of a mobile robot in a task of obstacle avoidance. We found that circuits
evolved with the morphogenetic system outperformed those evolved with a direct genetic
encoding.

We then described the hardware implementation of the robot controller on a FPGA.
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This implementation showed that the model of spiking neuron is suited for implementa-
tion in multi-cellular hardware. It also allowed us to estimate the resources required for
an implementation on the POEtic chip.

In conclusion, this chapter demonstrated that the morphogenetic system could be used
to evolve functional multi-cellular circuits. The evolutionary morphogenesis of more
complex circuits can now be tackled. At this stage we have considered the combina-
tion of evolution and development in multi-cellular circuits. In the next chapters we will
apply the evolutionary morphogenesis to circuits capable of learning, thereby considering
the third source of bio-inspiration of the POE model.



8 Evolutionary morphogenesis of
learning circuits

Abstract1

In this chapter we include learning, the third source of bio-inspiration of the POE model,
in multi-cellular circuits. Cells of the multi-cellular circuit implement a leaky integrate
and fire spiking neuron model that is capable of learning by modifying its synaptic weights
with spike-timing dependent plasticity.

Our objective is to demonstrate that the morphogenetic system can evolve multi-
cellular circuits capable of learning. We consider a synthetic learning task that is a pre-
liminary to a robotic application requiring learning described in the next chapter. The
task consists in learning the direction of motion of synthetic moving stimuli and, after
learning, discriminating the direction of motion of stimuli with respect to the direction
that was learned.

We first show how learning is performed and how the direction of motion of a stimulus
may be detected from the neural activity. We introduce a quantitative measure of the
learning performance and we show that this learning performance can be increased over
that of a reference network by evolution with the morphogenetic system. In this task the
morphogenetic system outperforms a direct encoding.

8.1 Introduction

In this chapter we include learning, the third source of bio-inspiration of the POE model,
in multi-cellular circuits. Our objective is to demonstrate that multi-cellular circuits capa-
ble of learning can be evolved by the morphogenetic system.

Cells of the multi-cellular circuit implement a leaky integrate and fire spiking neuron
model that is capable of learning by modifying its synaptic weights with spike-timing
dependent plasticity. The rationale for using spiking neurons is the same as in chapter 7,
with the addition that here we consider a time-dependent learning problem that suits the
temporal dynamics of spiking neurons. This spiking neuron model is suited for efficient

1Part of this work was published in a deliverable of the POEtic project [42].
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Figure 8.1: Neuroni receives inputs from neuronj. V represents the membrane potential of
the neurons.Jij is the synaptic contribution from neuronj to neuroni. Wij andAij describe
the efficacy of the synaptic link between neuronj andi.

implementation in hardware and an optimized implementation on the POEtic chip was
proposed by Torres et al. [170, 171, 172].

We consider a learning task where the circuit learns the direction of motion of a syn-
thetic moving stimulus applied to it and, after learning, discriminates the direction of
motion of the moving stimulus with respect to the direction that was learned [34]. This
task is a preliminary to a more complex learning task in a robotic application shown in the
next chapter where the motion of visual cues in the environment of the robot is learned
and used for navigation.

We start by analyzing how, after learning, the direction of motion of the stimulus
applied to the network can be deduced from the patterns of neural activity. Afterwards
we define a measure of thelearning performancethat quantifies how much the patterns
of activity differ depending on the stimulus direction.

The learning performance is used as the fitness function in evolutionary experiments.
We evolve parameters of the multi-cellular networks with the morphogenetic system to
increase their learning performance. We compare the results with a reference network and
with evolution with a direct genetic encoding.

All the experiments described in this chapter are done using a software simulation of
the multi-cellular circuit.

This chapter is organized as follows. In section 8.2 we describe the neural model and
the learning mechanism. In section 8.3 we describe the experimental setup which is used
to measure the learning performance and do evolutionary experiments. In section 8.4 we
define the learning performance. Section 8.5 shows how the morphogenetic system can
be used to improve the learning performance of the circuit. Results are discussed in in
section 8.6 before concluding in section 8.7.

8.2 Neural model and learning rules

The neural model is an integrate and fire model with leakage and a refractory period, with
learning based on Spike-Timing Dependent Plasticity (STDP) rules [34]. According to
these rules, the synaptic weights tend to increase when pre-synaptic neurons emit spikes
before post-synaptic neurons, whereas they tend to decrease when post-synaptic neurons
emit spikes before pre-synaptic neurons. This model, with the exception of learning,
was previously used in simulations of thalamo-cortical circuits [69], and the learning
mechanism is a variation of the mechanism proposed by Fusi et al. [46].
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• Si: spike variable (either 0 or 1)
• Vi: membrane potential
• θ: threshold
•Wij : synaptic weight
• Aij : synaptic activation. Takes discrete values, e.g. [0;1;2]
• Jij : synaptic contribution
• Y D: learning variable
• Y DMax: maximum value ofY D
• Lij : learning state of synapse

Table 8.1: Variables describing the dynamics of a neuron. The variables in the lower part of
the table describe the learning dynamics. Variables denoted with the subscriptij refer to a
synapse going from neuronj to neuroni.

8.2.1 Neural model

Figure 8.1 shows a neuroni receiving an input from a neuronj. The variables that de-
scribe the dynamics of the neuron are listed in table 8.1. The spike variableSi indicates
if neuroni emits a spike. It is one when the membrane potentialVi rises above the firing
thresholdθ (the neuron emits a spike) or zero otherwise:

Vi(t) > θ → Si(t) = 1

Vi(t) ≤ θ → Si(t) = 0

If the neuron emits a spike, the membrane potential for the next period is 0 (reset of
the membrane potential). If not, the contributions of the synapsesJij are added to the
membrane potential, and leakage is applied by the way of the decay constantKMem:

Si(t) = 1 → Vi(t + 1) = 0

Si(t) = 0 → Vi(t + 1) = KMem · Vi(t) +
∑

Jij(t)

Neurons can either be excitatory or inhibitory. If neuronj is inhibitory the contribu-
tion Jij to neuroni is negative. The constantKMem can be different for excitatory or
inhibitory neurons.

The synaptic contributionJij is highest just after neuronj fires. It then decays toward
zero with the decay constantKSyn:

Sj(t) = 1 → Jij(t + 1) = Jij(t) + Wij · Aij(t)

Sj(t) = 0 → Jij(t + 1) = KSyn · Jij(t)

The constantsWij andAij represent the synaptic weight and activation. The synaptic
weight is a fixed parameter of the model while the synaptic activation is affected by learn-
ing. The constantsKSyn andWij may be different depending on the type of the pre-
and post-synaptic neuron (excitatory or inhibitory). In this case their name is completed
by two subscriptsab. a andb are either 0 or 1 and indicate the type of the post- and pre-
synaptic neuron respectively (0 for excitatory, 1 for inhibitory). The state of the neuron
is updated every∆t = 1 millisecond and the various decay constantsKx (e.g. Ksyn,
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Figure 8.2: Illustration of the neural model. The two neuronsa andb are connected to neuron
i. VariablesSa andSb represent the spikes emitted by neurona andb (lower left plot).Ja and
Jb are the synaptic contribution of neurona andb to neuroni. The synaptic contribution is
maximum when the pre-synaptic neuron fires and then it decays (upper right plot). Eventually
V represents the membrane potential of neuroni (lower right plot). The constants used in this
example are:KSyn = 0.95, KMem = 0.937, Wij ·Aij = 1.

Kmem) are given for this update period. The constantKx implements the exponential
decay of the variablex, whose time constantτx relates as follows:

Kx = e−∆t/τx.

If the neuron update time∆t is changed, the decay constantsKx must be computed from
the time constantsτx according to the above formula.

Figure 8.2 shows an example network where two neurons a and b send spikes to a
common neuron i; it illustrates the evolution of the synaptic contributions and membrane
potential over time.

8.2.2 Learning rules

The learning mechanism affects the synaptic activation variableAij of connections be-
tween excitatory neurons. The other connections are not subject to learning. The synap-
tic activations of the connections that learn take predefined discrete values, for example
[0;1;2;4]. The synaptic activation is updated according to the timing of the pre- and
post-synaptic spikes (STDP). A pre-synpatic spike occurring before a post-synaptic spike
tends to increase the synaptic activation, whereas a post-synaptic spike occurring before
a pre-synaptic spike tends to decrease the synaptic activation.

The synaptic activation is controlled by the variableLij which is the learning state of
the synapse. When there is no activity the learning state drifts to 0. However, when there
is frequent correlated pre- and post-synaptic spikes, this variable increases or decreases.
When reaching a positive thresholdTp or a negative thresholdTn, the synaptic activation
changes (increases or decreases) and the learning state is normalized.
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The learning state is updated according to spike timings. The learning variableY D is
indicative of spike timings. It takes a maximum value when a spike is emitted, and decays
toward 0 otherwise with the decay constantKLearn:

Si(t) = 1 → Y Di(t + 1) = Y DMax

Si(t) = 0 → Y Di(t + 1) = KLearn ∗ Y Di(t)

The learning state is then updated as follows:

Lij(t + 1) = KAct ∗ Lij(t) + Y Dj(t) ∗ Si(t)− Y Di(t) ∗ Sj(t)

Finally, the learning state is normalized when it crosses a threshold and the synaptic
activation is either increased or decreased:

Lij(t) > Tp → Lij(t + 1) = Lij(t)− (Tp− Tn), Aij ↗
Lij(t) < Tn → Lij(t + 1) = Lij(t) + (Tp− Tn), Aij ↙

Aij ↗means thatAij increases, for instance from 0 to 1, from 1 to 2, or from 2 to 4 if
the activations are in the set [0;1;2;4].Aij ↙ means thatAij decreases in a similar way.

In this chapter, unless otherwise noted, the synaptic activation of excitatory to excita-
tory connections takes the values 0 or 1, and prior to learning it is set to 1. The activation
of other synaptic connections is always 1.

Figure 8.3 illustrates the effect of pre- and post-synaptic spikes on the learning state
Lij of the synapse between neuronj and neuroni.

8.3 Learning setup

The multi-cellular circuit used to learn moving stimuli consists of a network of 20 by 20
neurons, with each neuron connected to its 24 neighbors in a 5x5 neighborhood [34]. Bot-
tom of figure 8.4 illustrates this network. Each cell represents a neuron (the connectivity
is not depicted). Darker cells represent inhibitory neurons, which represent 20% of the to-
tal number of neurons. This network is used as thereference networkin the evolutionary
experiments. The parameters of the neural model are shown in table 8.2.

A moving stimulus is applied to the network. Applying a stimulus means that the
membrane potential of each neuron receives a contribution which is proportional to the
amplitude of the stimulus. The amplitude of the stimulus remains constant within a col-
umn of neurons, but varies in the horizontal direction. The stimulus moves in the hori-
zontal direction, either to the left or to the right. It is periodical, meaning that the stimulus
wraps around at the edges of the network. Top of figure 8.4 shows the shape of the stim-
ulus and its direction of motion.

The stimulus is characterized by its shape, speed, amplitude, and noise. The shape is
kept fixed in all experiments. Here it issin(x)10, with x varying between0 and2π across
the network. As the stimulus is periodical its speed is indicated in Hertz. A speed of 1 Hz
means that the bump in the stimulus moves from the left to the right of the array in one
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Figure 8.3: Illustration of the learning mechanism. Neuron j is connected to neuron i through
synapse ij. Neuron i emits a spike before neuron j near t=200ms. Then neuron j emits a spike
before neuron j near t=800ms. There is then a succession of spikes near t=1000ms where
neuron i fires shortly before neuron i (bottom left plot). The effect of the spikes onY Di

andY Dj and on the learning state of the synapseLij is illustrated in the right plots.Lij

decreases when a pre-synaptic spike occurs before a post-synaptic spike; in the opposite case
Lij increases. The constants used in this example are:Y DMax = 64, KLearn = 0.95,
KAct = 0.99.

Figure 8.4: The bottom of the figure shows the network composed of 20 by 20 neurons.
Each neuron is connected to its 24 neighbors. Darker cells represent inhibitory neurons. This
network is used as a reference network in evolutionary experiments. The top of the figure
shows the stimuli which is applied to the network. It moves along the horizontal direction.
The stimulus amplitude is identical for all neurons within the same column.
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Wr00 0.2 Wr01 -4
Wr10 2 Wr11 0
KSyn00 0.95 KSyn01 0.72
KSyn10 0 KSyn11 0
KMem0 0.937 KMem1 0.875
KAct 0.999 KLearn 0.95
Y DMax 64 A00 [0;1]
Aother 1 θ 10
Tp 128 Tn -128
Time step 1 ms

Table 8.2: Parameters of the neural model.

second. Noise is applied to each neuron as part of the stimulus. It is Gaussian noise with
mean 0 and is characterized by its standard deviation.

This network is used to learn moving stimuli as follows. First the network undergoes
a learning phaseand then arecall phase. During the learning phase the learning mecha-
nism is activated and the network is repeatedly stimulated with a stimulus moving in the
forwardor learned direction along the horizontal axis during some “TLearn” time.

Upon successful learning the synaptic connections tend to orient along the direction
of the stimulus which is learned (figure 8.5). This occurs because connections oriented
along the backward direction tend to see post-synaptic spikes before pre-synaptic spikes,
and according to the learning rule this decreases their synaptic activation.

Afterwards learning is turned off by freezing the weights of the synaptic connections
and the network undergoes a recall phase in which the network may be used to discrim-
inate the direction of motion of the stimulus applied to it. This aspect is detailed in the
next section.

The parameters of the stimulus (speed, amplitude and noise) need not be the same
for the learning and recall. In this chapter the stimuli parameters are: during learning,
amplitude of 128 mV/642, speed of 6 Hz and noise standard deviation of 0; during re-
call, amplitude of 40 mV/64, speed of 6 Hz and noise standard deviation of 20 mV/64.
Appendix F describes how to select these parameters and their influence on learning.

8.4 Learning performance

Since the objective of this chapter is to evolve networks in order to increase their learning
performance, we need to define a measure of thelearning performancewhich is used as
the fitness function in the evolutionary experiments.

We want to learn stimuli which move along the horizontal direction (e.g. left or right),
and subsequently detect from the patterns of activity of the network whether the stim-
ulus currently applied to the network moves in the learned (or forward) direction or in
the opposite (or backward) direction. Therefore we define the learning performance as a

2The unit of amplitude and noise standard deviation are mV/64 because the hardware implementation
of the neural model uses fixed-point arithmetic where one unit is equal to 1/64 mV.
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Figure 8.5: On the left, before learning, connections between neurons exist in all directions.
After learning (right), the connections which are oriented along the backward direction (op-
posite to the direction of learning) see their synaptic activation frequently decreased to zero
by the learning mechanism (the post-synaptic spikes tend to occur before the pre-synaptic
spikes), effectively “removing” the connections.

Figure 8.6: The process which is used to collect data to measure the learning performance.
After the learning phase there is the recall phase where the stimulus is applied again, once
moving in the forward and once in the backward direction. The learning performance is
computed based on the data collected during the recall phase.

measure that indicates how much the patterns of neural activity aredifferentafter learn-
ing, when the stimulus moves in the learned direction or in the opposite direction. In
other words, this measure indicates howsensitiveis the network to the moving stimulus.
Higher learning performance means that the network is more sensitive and therefore it
is potentially easier to detect the direction of motion of the stimulus from the network
activity.

The measure of the learning performance must satisfy two criteria: its value should be
close to zero when the learning timeTLearn is zero, and its value should increase with
increased learning time.

The learning performance is measured from the neural activity during the recall phase.
The moving stimulus is applied to the network while recording its activity: the stimulus
first moves for “TRec” time in the same direction as that of learning (the forward direc-
tion), then it moves for the same time in the opposite direction (the backward direction).
Figure 8.6 illustrates the process used to record the activity. Unless otherwise noted the
learning timeTLearn is 10 seconds and the recall timeTRec is 3 seconds.
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Figure 8.7: Activity in a measurement column in the center of the network with a forward
(left plot) or backward (right plot) moving stimulus after 10 seconds of learning. The arrows at
the bottom indicate when the bump of the stimulus is situated over the measurement column.
When the stimulus moves forward there is always activity in the measurement column when
the bump of the stimulus passes over this column. When the stimulus moves backward this
is not always the case. This shows that the network activity tends to be correlated with the
stimulus when it moves in the forward direction. Also the network shows a higher activity
when the stimulus moves forward.

Figure 8.7 shows the number of spikesρ(t) observed in a measurement column of 20
neurons situated in the center of the network in function of the stimulus direction after
learning. The activity of the neurons tends to be correlated with the stimulus when it
moves in the forward direction and the activity of the network is also higher in this case.3

The measure of the learning performance is based on the observation that the network
activity is higher when the stimulus moves in the forward direction than when it moves in
the backward direction. The learning performanceFact is defined as follows:

Fact = Fforward− Fbackward,

3The higher and correlated activity observed with the forward stimulus can be understood by considering
the connectivity patterns among neurons that appear after learning (figure 8.5). Connections tend to orient
themselves along the direction of the stimulus which is learned. Let us assume that a neuron fires when the
bump of the stimulus passes over it (i.e. the combined contribution of the Gaussian noise and the stimulus
leads to the neuron firing). The firing of this neuron tends to contribute (increase) the membrane potential of
neurons situated along the forward direction, whereas it seldom increases the membrane potential of those
situated along the backward direction because the synaptic activation of most of these connections is 0. The
noise and amplitude of the stimulus are selected such that this contribution is critical to ensure the firing
of neighboring neurons when the bump of the stimulus passes over them. Therefore the higher membrane
potential of the neurons in the forward direction increases their firing probability when the stimulus moves
forward. On the contrary neurons along the backward direction relative to the neuron which fired tend
to have a lower membrane potential than those situated along the forward direction and therefore if the
stimulus moves in the backward direction the probability of these neurons firing is lower. As a consequence
the activity of the network when the stimulus moves backward tends to be lower than when the stimulus
moves forward. In this case the activity in the measurement column may also decorrelate from the stimulus
(i.e. sometimes there may be no activity in the measurement column when the stimulus moves backward).
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Figure 8.8: Learning performanceFact in function of the duration of learningTLearn. The
recall timeTRec is 3 seconds. The figure also illustratesFforward andFbackward. The
vertical axis represents the difference of spike counts measured during the timeTRec for
Fact, and the spike counts measured during the timeTRec for Fforward andFbackward.

whereFforward andFbackward are the number of spikes counted in the network (or
also the network activity) while the stimulus moves in the forward respectively backward
directions during the recall timeTRec. We also refer toFforward andFbackward as
the forward and backward activity respectively.

This measure is simply a difference of spike counts, which has the advantage of being
easy to compute. Figure 8.8 showsFforward, Fbackward andFact in function of the
learning timeTLearn. Fact is close to 0 whenTLearn is small, and it increases smoothly
with longer learning time, which satisfies the criteria for a measure of the learning perfor-
mance.

8.5 Evolution of the learning circuits

In this section we demonstrate that the multi-cellular circuit introduced above can be
evolved with the morphogenetic system to increase its learning performance. We compare
the performance of the evolved circuit to the reference network illustrated in figure 8.4.
The fitness function is the measure of the learning performanceFact described in section
8.4.

Many parameters of the network may be evolved but we only consider the evolution
of two of them, which may be difficult to select by analytical methods: the type of the
neurons, and the maximum synaptic activation. In the first case we compare the results of
evolution with a direct genetic encoding.
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GA parameters Genetic coding
Population: 50 Coding: morphogenetic system
Crossover: 20% Diffusers: 16
Mutation: 1% Expression table: 2 entries
Selection: rank (15 best selected) Chromosome size: 192 bits
Elitism: 5 individuals are copied unchanged

Table 8.3: Parameters of the genetic algorithm and of the morphogenetic system.

8.5.1 Neuron type

The reference network (figure 8.4) contains a regular distribution of excitatory and in-
hibitory neurons. Instead of using this predefined distribution of neurons, we evolve the
type of the neurons with the morphogenetic system. Each cell can therefore implement
one of two predefined functionalities (an excitatory or inhibitory neuron) and the expres-
sion table of the morphogenetic system contains two entries. The parameters of the ge-
netic algorithm and of the morphogenetic system are shown in table 8.3. The parameters
of the stimuli during learning and recall are those indicated in section 8.3.TLearn is
10 seconds,TRec is 3 seconds. Evolution is repeated 5 times and figure 8.9 shows the
evolution of the maximum and average fitness averaged on the 5 runs. The morphogenetic
system manages to find networks that have a better maximum fitness than that of the the
reference network (horizontal line in the figure) (T-test, p=0.014).

As a comparison, we evolve the type of the neurons with a direct genetic encoding.
The parameters of the genetic algorithm are indicated in table 8.3. The genetic string of
the circuit consists of one bit per neuron (excitatory or inhibitory neuron). The size of
the genetic string is thus 400 bits. The initial population is seeded with 10 genetic strings
representing networks composed of 80% of excitatory neurons, which is the ratio of ex-
citatory neurons in the reference network. After more than 100 generations no networks
achieve a higher fitness than that of the reference network (figure 8.10).

Analysis of the networks in the last generation shows that the networks obtained with
the morphogenetic system tend to have large regions of interconnected excitatory neu-
rons, whereas networks obtained with the direct genetic encoding tend to have smaller
regions containing excitatory neurons (figure 8.11). Furthermore on average on the entire
population, networks evolved with the morphogenetic system tend to display more exci-
tatory neurons (65%) than networks evolved with the direct encoding (52%). A higher
number of excitatory neurons tends to increase the activity in the network and this may
lead to higher fitness scores since the fitness is linked to the network activity.

8.5.2 Neuron type and maximum synaptic activation

In previous evolutionary run the synaptic activation variableAij could take the value 0 or
1 under the action of the learning rule. A larger range of values for the synaptic activation
may however be used. To determine the upper bound of the synaptic activation we resort
to evolution. The minimum value ofAij is zero, but the maximum value ofAij (AMax)
is evolved in the set [0;1;2;4] (the maximum value ofAij is the same for all the neurons
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Figure 8.11: Distribution of excitatory neurons at generation 100 in a typical evolutionary
run with the morphogenetic system (left) and a direct genetic encoding (right). Each square
represents one neuron of the network and the color intensity is the percentage of excitatory
neurons in the population at that location (brighter colors mean mostly excitatory neurons).
Networks obtained with the morphogenetic system tend to have large regions of intercon-
nected excitatory neurons, whereas networks obtained with the direct encoding tend to have
smaller regions of excitatory neurons.
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Figure 8.12: Evolution of the maximum and average fitness (average of 5 runs) when evolv-
ing the neuron type andAMax.

in the network). The length of the genetic string is 194 bits. The first 192 bits encode
the type of the neurons with the morphogenetic system as above. The last 2 bits encode
AMax in binary (i.e. 0, 1, 2 or 4). The networks are evolved with the same stimuli
parameters as above. Figure 8.12 illustrates the maximum and average fitness obtained
with this setup. In comparison to the previous results obtained with the morphogenetic
system withAMax = 1, the maximum fitness that is obtained here is higher (T-test,
p<0.001).

Analysis of the evolved networks shows that evolution favorsAMax = 2 (i.e. Aij can
take the values of 0, 1 or 2) (figure 8.13). Indeed allowing higher values ofAij let spikes
have a stronger influence on the membrane potential of post-synaptic neurons. This may
increase the fitness of the network by allowing higher activity when the stimulus moves
in the learned direction. There is however a trade-off between the value ofAMax and the
risk of generating locked oscillations. Locked oscillations correspond to the state of the
network where the neurons are not sensitive anymore to the input stimulus and continu-
ously emit spikes. With high values of the synaptic activation a spike may increase the
potential of connected neurons in such a way that they immediately fire and sustain the
firing, even if the stimulus is removed or moves in the backward direction. Therefore evo-
lution has to balance between higher activity (and potentially higher fitness) that higher
values ofAMax may provide and the risk of generating locked oscillations that tend to
decrease the fitness.

8.6 Discussion

We developed a measure of the learning performance based on the network activity that
we used as the fitness in evolutionary experiments. In a hardware implementation the
learning performance can be measured efficiently with a simple counter. Alternate mea-
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Figure 8.13: Distribution of the values ofAMax at generation 0 and generation 100 in the
population of networks (average of 5 runs). Evolution favorsAMax = 2.

sures based on firing synchrony or firing correlation may be devised (see appendix F) but
they are not used here because they are less precise or more computationally demanding
than the one described in this chapter.

Since the network activity varies in function of the stimulus direction during recall,
the direction of motion can be detected by comparing the activity of the network to a
predefined threshold. Alternatively a “readout” neuron that is connected to all the neurons
of the network may be used: by selecting appropriate constants of the neural model, the
readout neuron can be made to fire only with a forward moving stimulus.

We evolved the neuron type and the maximum synaptic activation with the morpho-
genetic system and we showed that it was possible to increase the learning performance
through evolution. In particular the morphogenetic system outperformed a direct encod-
ing when evolving the type of the neurons. Networks obtained with the morphogenetic
system displayed large areas of connected excitatory neurons whereas those evolved with
a direct encoding showed smaller areas of connected excitatory neurons. Large areas of
excitatory neurons may increase the activity in the network and therefore allow to achieve
higher learning performance. In this task the morphogenetic system may thus benefit
from its ability to easily set large area of cells to identical functionalities, as we showed
in chapter 6.

In some evolved networks neurons may enter in locked oscillations, meaning that they
continuously emit spikes regardless of the stimulus direction. The detection of the stim-
ulus direction may be more difficult in the presence of locked oscillations. Nonetheless
this problem may be alleviated simply by selecting after evolution an appropriate thresh-
old against which the network activity is compared to determine the direction of motion
of the stimulus. Alternatively this threshold may also be evolved.

The multi-cellular network is capable of learning stimuli moving in a range of speeds
which is defined by the neural time constants (appendix F shows the influence of the
stimuli speed on the learning performance). By evolving the neural time constants the
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dynamics of the network may adapt to the of stimuli likely to be encountered in the envi-
ronment, e.g. stimuli moving at different speeds than the one we used here.

In this chapter we considered learning in the biological sense (i.e. change of synaptic
weights over time). We did not consider the issue of generalization that is usually as-
sociated with learning in machine learning. Generalization might be considered as the
capacity of a network to learn a stimulus moving at a particular speed and by generaliz-
ing from this experience to also detect stimuli moving at other speeds. As mentionned
above, the range of speeds in which learning is possible is controlled by the network time
constants. Therefore, although the network is indeed learning in a biological sense, in a
machine learning sense it is mostly memorizing events.

8.7 Summary

In this chapter we included learning in multi-cellular circuits and we considered the evo-
lutionary morphogenesis of these learning circuits.

We used a multi-cellular network composed of spiking neurons with spike-timing de-
pendent plasticity to learn and subsequently discriminate the direction of motion of a
stimulus applied to the network. We considered this task because it is a time-dependent
learning problem which is suited to the temporal dynamics of spiking neurons, and be-
cause we intend to evolve this circuit in the next chapter to control the navigation of a
mobile robot for a learning task in an environment with moving visual cues.

We showed that, after learning, the direction of motion of a stimulus applied to the
network could be deduced from the neural activity. From this observation we devised
a measure of the learning performance which indicates how much the network activity
changes in function of the stimulus direction. We used this measure as the fitness function
in evolutionary experiments.

Finally we evolved multi-cellular circuits with the morphogenetic system to increase
their learning performance. We successfully found networks displaying higher learning
performance than a reference network. Furthermore the morphogenetic system outper-
formed a direct genetic encoding when evolving the type of the neurons in the network.
We therefore demonstrated that the morphogenetic system could be applied to the evolu-
tion of multi-cellular circuits capable of learning.
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9 Evolutionary morphogenesis of
learning mobile robot controllers

Abstract1

In the previous chapter we considered the evolution of multi-cellular circuits capable of
learning. We used these to learn and discriminate synthetic moving stimuli. Our objec-
tive in this chapter is to build upon the results that we obtained in the previous chapter
and demonstrate that these multi-cellular circuits can be evolved with the morphogenetic
system to control the navigation of a robot in a task that requires learning capabilities.
Learning is implemented with the same neural model as in the previous chapter.

We evolve with the morphogenetic system a multi-cellular circuit that controls the
navigation of a robot in an environment with moving visual cues. The task of the robot
is to learn one of the moving visual cues, and afterwards it has to perform a homing
behavior toward the cue that it has learned. Therefore learning at the synaptic level of the
neural model induces learning at the behavioral level of the robot. We call this application
motion-basednavigation because the information that the robot has to rely on to navigate
is the motion of the visual cues. Results show that the multi-cellular controller can be
successfully evolved with the morphogenetic system, and behavioral tests show that the
robot is able to home towards the learned cue from most of the locations in the arena.
Since the morphogenetic system combines evolution and a developmental system, the
application described in this chapter combines the three axis of the POE model of bio-
inspiration: evolution, development and learning.

9.1 Introduction

In this chapter we want to investigate the evolutionary morphogenesis of multi-cellular
circuits capable of learning to control a robot in a task that requires learning capabilities.

1Part of the experiments were carried out by Tiago Bertolote who studied the optimization of the size
and connectivity of the retina during a term project. Thierry Frank contributed by developing the LED
displays used in the robotic experiments during another term project. Both projects were carried out under
my supervision.
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In particular we want to explore evolutionary robotics in the context ofdynamicen-
vironments, where the meaning of environmental cues can only be understood by their
change over time. This means that the sensors of a robot must be integrated over time
to reveal information such as, for instance, the direction or the velocity of movement of
environmental cues (e.g. robots or objects in the environment). Among dynamic en-
vironments we consider those with dynamicvisual cues as particularly interesting. In
comparison to common robotic sensors such as ultra-sound or infra-red which give infor-
mation about a specific point in the environment, vision gives an entire “picture” of the
environment: the environment is sensed up to very long distances and with a wide field
of view using nowadays cheap cameras. Therefore vision has the potential to bring more
information about the environment and in a shorter amount of time than other sensors.
Vision is not only rich in information in the spatial domain (e.g. a static image) but also
in the time domain. For instance changes across several frames may allow to detect the
speed of motion (of the robot or of other objects in the environment), to detect changing
signals (e.g. a blinking alarm sign), to perform chasing behaviors (estimating the speed
of the target with respect to its own speed), to detect doors opening or closing, etc.

In this chapter we therefore consider a robotic task in an environment with dynamic
visual cues. The task builds on the results that we obtained in the previous chapter where
we showed that multi-cellular circuits composed of spiking neurons with spike-timing
dependent plasticity could learn and discriminate synthetic moving stimuli.

The robot is placed in an arena and has to learn a moving visual stimulus in the en-
vironment (the dynamic cue). After learning the robot has to perform a homing behavior
toward the learned stimulus. If the robot can successfully do this, it means that the neural
controller can learn moving visual cues and later on react to the learned cue by trigger-
ing a particular robot behavior. Learning at the synaptic level of the neural model thus
induces learning at the behavioral level of the robot. Since navigation is based on moving
visual cues, we say that this application consists ofmotion-basednavigation.

In this chapter we start by assessing whether a multi-cellular circuit can learn and dis-
criminate real moving stimuli in the robotic environment. This is necessary because real
stimuli may differ from the synthetic stimuli used in the previous chapter and furthermore
the rate of acquisition of images is limited by technical factors in comparison the rate that
was used in the previous chapter.

Afterwards we investigate whether the morphogenetic system can evolve a multi-
cellular circuit to control the navigation of a mobile Khepera robot for the task described
above. We perform extensive behavioral tests of the best evolved controllers on the real
robot.

Since the primary objective of this chapter is to investigate whether the morphogenetic
system can evolve multi-cellular circuits for this robotic task, all experiments are done in a
software simulation of the multi-cellular circuit. The implementation of the multi-cellular
circuit on the POEtic chip is a matter of technical development. We briefly outline how
this implementation may look like and we estimate the number of POEtic chips necessary
for it.

The rest of this chapter is organized as follows. Section 9.2 describes the experimental
setup and the robotic task, and it highlights its challenges. Section 9.3 describes the neural
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model and the learning circuit used in this task. In section 9.4 we assess whether a multi-
cellular circuit is capable of learning and discriminating real visual stimuli in the robotic
environment. In section 9.5 we describe the evolution with the morphogenetic system of
the multi-cellular circuit to control the navigation of the robot. Results are discussed in
section 9.6 where we also estimate the number of POEtic chips required for the hardware
implementation of the circuit. The chapter concludes in section 9.7.

9.2 Setup and robotic task

The robotic setup (figure 9.1) consists of a rectangular arena (40 cm x 70 cm) with two
LED displays (30 cm wide, 5 cm high) placed on opposite sides which show a vertical
3 cm wide luminous bar moving along the horizontal direction as indicated in the figure.
The two bars move in opposite directions for an observer placed in the arena. The bars
move at a speed of 6 Hz and are periodical: they move from one extremity of the display
to the other 6 times per second.

The robot is a two-wheel differential drive Khepera robot [120] with a custom CMOS
digital camera module capable of acquiring images at 50 frames per second. The camera
module is described in appendix G. The camera field of view is approximately 25◦. This
means that the display fills the field of view when the robot is placed in the center of the
arena.

The robot sends the data from the camera and its sensors via a cable to a desktop
computer that simulates the multi-cellular spiking network, and in return it receives the
motor commands from the computer.

The robotic task consists of the two phases illustrated in figure 9.2. First the robot
is still, facing one of the moving bars. This is thelearning phase. During this time the
spiking neural controller is allowed to modify its synaptic weights according to the neural
learning rules. Afterwards learning is deactivated and the robot is randomly placed in the
environment and has to do ahomingbehavior which consists in navigating back toward
the learned bar. Since both moving bars are displayed at all time during the experiment,
the robot cannot simply home toward a luminous bar, but it really has to learn and dis-
criminate the direction of motion of the bar. In the evolutionary experiments, fitness areas
placed on the floor of the arena in front of the displays are used to measure the fitness of
the robot using its floor sensor.

This robotic task relies on moving stimuli to perform navigation. Since the robot is
itself moving, the relative motion of the objects that the robot perceives varies in function
of the robot own motion (ego-motion). In other words, the motion vectors of objects
in the environment sum up with the own motion vector of the robot to give the relative
motion vectors that the robot perceives. Therefore the robot ego-motion may hamper the
detection of the desired stimuli. This is a challenging task that the evolved controller
needs to solve. Another challenge is that the moving stimulus may be difficult to perceive
when the robot is very close to it (because it appears during a short time in the field of
view of the robot) or far from it (because it fills only a small part of the field of view of
the robot).
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Moving stimulus

Fitness areas

Moving stimulus

Khepera robot

Figure 9.1: Top: schematic of the arena used in the robotic experiment (left) and real setup
(right). Two displays placed on the opposite sides of the arena show a vertical bar moving in
the direction indicated by the arrows. The fitness areas placed on the floor next to the displays
are used to measure the fitness of the robot in the evolutionary experiments using the floor
sensor of the Khepera robot. The two fitness areas have different colors so that it is possible
to detect on which one the robot is located. Bottom: close-up of the Khepera robot with
its custom 2D camera. The robot receives power and motor commands from the cable and
sends its sensory information (vision, proximity sensors, speed of the wheels) to the computer
simulating the neural network by the same cable. The LED display in the background shows
the moving stimuli.
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Learning Homing

Figure 9.2: The robotic task consists of two phases. Duringlearning (left figures) the robot
faces one of the moving bars and the synaptic weights change according to the learning rule
of the spiking neurons. Afterwards the robot is randomly placed in the arena and has to do a
homingbehavior; i.e. it has to navigate toward the learned bar (right figures).

To minimize the time required for the experiments, and in particular the evolutionary
experiments, they are all done with a software simulation the mobile robot. The best
evolved controllers are however validated on the real robot afterwards. The Khepera
simulation is a minimalist simulation with noise added to the sensors and actuators [75].
The camera is simulated as a 1D linear camera using ray-tracing techniques. Figure 9.3
illustrates what the robot “sees” when placed in the center of the arena and facing the
left-moving stimulus.

9.3 Neural model and learning retina

The neural model is the leaky integrate and fire model with spike-timing dependent plas-
ticity that we described and analyzed extensively in chapter 8. The parameters of the
model are the same as those used in that chapter (table 8.2).

In order to learn and discriminate moving visual stimuli, we use a 2D array of neurons
with local lateral connections to their neighbors, as in chapter 8. However, instead of using
synthetic stimuli, real stimuli coming from a camera mounted on the robot are used. We
refer to this network as theretinasince it relates to the robot vision.

Chapter 8 showed that a network of 20x20 neurons with each neuron connected to its
24 neighbors could learn moving stimuli. However the experiments of that chapter were
slower than real-time (i.e. a 1 ms update of network took more than 1 ms to compute).
This was not an issue in these simulations, however here it is important that the network
controlling the robot runs in real-time since the robot is continuously moving. Therefore
the network size and the connectivity neighborhood are reduced. An 8x8 network with
local lateral connectivity to 14 neighbors is used: the neighborhood is 5 neurons hori-
zontally and 3 neurons vertically. The rationale leading to this network is explained in
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Figure 9.3: Simulated vision of the robot when located in the center of the arena and facing
the left-moving stimulus at 6 Hz. Each image represents a horizontal line of pixels that is
vertically situated in the middle of the field of view of the robot. Each image is taken after 10
ms.

appendix H.
Figure 9.4 illustrates how this retina is used in the robotic setup and the distribution

of excitatory and inhibitory neurons in the retina. The visual stimulus is acquired from a
camera mounted on the Khepera robot (the camera is described in appendix G). After ac-
quisition, the image is preprocessed on the robot. Preprocessing consists of digital image
stabilization which is necessary because the robot tends to pitch forward and backward
while moving. Finally a single line image which is 24 pixels wide is sent every 20 ms
to the computer simulating the neural network. A single line image is used because the
stimulus moves along the horizontal axis only.

The line of pixel is used as the stimulus which is applied to the neural network. Each
pixel is applied to a column of neurons (e.g. the leftmost pixel is applied to the leftmost
column of neurons). This means that the membrane potential of all the neurons of a
column of the network receive a contribution which is proportional to the brightness of
the pixel. When the line of pixels is wider than the number of neurons it is downsampled
accordingly (subsampling at regular intervals).

The contribution of the pixels is scaled so that the brightest pixel (value of 255 on 8
bits) corresponds to an increase of the membrane potential at each network step of 2 mV
during learning and 0.6 mV during homing. In addition Gaussian noise with a standard
deviation of 0.3 mV is added to the membrane potential of each neuron during hom-
ing. These parameters are selected according to the characterization done in chapter 8 to
ensure that learning is possible. The effective stimulus is however affected by environ-
mental factors such as ambient light, flickering of neon lights, distance to the display, and
brightness and contrast gains of the camera.

As in chapter 8 the retina is updated every millisecond. Due to technical limitations
images are acquired from the camera every 20 ms. Therefore the network receives the
same visual input during 20 ms. This departs from experiments of chapter 8 where the
synthetic stimulus was “acquired” every millisecond. The output of the retina (the V box
in figure 9.4) is the number of spikes measured during 100 ms.
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Figure 9.4: The learning network, or retina, is a 2D array of 8x8 neurons, with each neuron
connected to its local neighbors (5x3 neighborhood). It is stimulated every millisecond by
the input coming from the camera after preprocessing (image stabilization): each column
of neurons receives a contribution to the membrane potential which is proportional to the
brightness of the corresponding pixel. The V box (V for vision) at the bottom is the number
of spikes occurring in the retina during 100 ms. Dark cells represent inhibitory neurons, the
other cells are excitatory neurons.
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Learned stimulus

Robot facing learned stimulus
(Fforward)

Robot facing opposite stimulus
(Fbackward)

Y

X

Figure 9.5: After learning, the activity of the retina is measured for all the positions of the
robot in the arena. This is done twice: once with the robot facing the learned stimulus, and
once with the robot facing the opposite stimulus. The robot is does not move during the
measures.

9.4 Learning in the robotic setup

In this section we show that the retina can learn and discriminate the moving stimuli in
the robotic setup, even though the real stimuli differ from the synthetic stimuli used in the
chapter 8: here we use luminous bars whereas in the chapter 8 we used sinusoidal stimuli.
In addition we illustrate the influence of the robot location in the arena and of ego-motion
on the activity of the retina.

In the following experiments, when learning is deactivated, the noise and the contri-
bution of the pixels to the membrane potential of the neurons correspond to the settings
indicated in section 9.3 for the homing.

The effect of the position of the robot in the arena is tested as illustrated in figure 9.5.
First the robot learns one of the stimulus for 30 seconds (e.g. the left-moving stimulus in
the figure). Afterwards learning is deactivated and the activity of the retina is measured for
all the positions of the robot in the arena, with the robot always facing one of the stimulus
(the robot does not moves). This is repeated twice: once with the robot facing the learned
stimulus, and once with the robot facing the opposite stimulus. For each position of the
robot the number of spikes emitted by the retina during 1 second is counted.Fforward
andFbackward are respectively the number of spikes recorded while the robot faces the
learned stimulus and the opposite stimulus. The measures are replicated three times and
averaged.

Figure 9.6 illustrates the activityFforward andFbackward in function of the posi-
tion of the robot in the arena. The results show that the activity of the retina is about 10
times higher when the robot is located near the center of the arena and faces the learned
stimulus (brightest “half moon” in the left plot) in comparison to the activity when it faces
the opposite stimulus. This means that, in this area, it is possible to easily detect which
stimulus the robot faces by monitoring the retina activity. Therefore learning and discrim-
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Figure 9.6: Color map representing the activity of the retina as function of the position of the
robot in the arena. The left figure isFforward (activity when facing the learned stimulus)
and the right figure isFbackward. Note that the scale is smaller forFbackward for better
rendering.

inating real stimuli seem possible, even if the stimuli and the image acquisition rate differ
from those used in chapter 8.

When the robot faces the learned stimulus and is very far from it the activity of the
retina decreases. This is caused by the display occupying only a small portion of the
robot field of view: only a limited number of neurons are stimulated and this decreases
the activity of the network. When the robot faces a stimulus and is very close to it, the
robot tends to see periodical flashes of light. Therefore it cannot discern the direction of
motion of the stimulus and the activity of the retina also decreases. If the intensity of the
stimulus is high enough (e.g. when the robot is very close to the display) the neurons
might however still fire. This is can be seen forFbackward in the figure, but it also
occurs forFforward, except that it is not visible on the plot for color scaling reasons.
Therefore when the robot is very close or very far from the displays it may not be possible
to know which stimulus the robot faces from the activity of the retina.

The angle at which the robot sees the stimuli (i.e. the position of the stimuli in the
retina) and the robot own motion may also influence the retina activity. To assess this, the
activity of the retina is measured in function of the robot angle while the robot is rotating
with a constant speed, either clockwise (right rotation) or counterclockwise (left rotation),
as illustrated in figure 9.7. The robot is placed in the center of the arena and learns a
stimulus during 30 seconds (e.g. the left-moving stimulus in the figure). Afterwards
learning is deactivated and the activity of the retina is measured during 100 ms while
varying the robot angle. During the measure the robot rotates on the spot at different
speeds. A rotation speed of +/- 1 means that e.g. the left wheel is set to +8mm/s and the
right wheel to -8mm/s.

Figure 9.8 illustrates the activity of the retina in function of the angle of the robot,
its rotation speed, and its direction of rotation. The results indicate that the speed and
the direction of rotation of the robot have an influence on the network activity. At low
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Learned
stimulus

Figure 9.7: The robot is in the center of the arena and learns the upper left-moving stimulus.
Afterwards the activity of the retina is measured while the robot rotates, for different rotation
speeds.

rotation speed the retina reacts in the same way to the learned stimulus regardless of the
direction of rotation of the robot. At higher speed the retina tends to react differently in
function of the direction of rotation of the robot. In particular with one of the direction of
rotation (right rotation) there is almost no activity in the retina when the robot faces the
learned stimulus. This is caused by the relative motion of the stimulus in the field of view
of the robot. When the robot rotates right the relative velocity of the learned stimulus (that
moves left) in the field of view of the robot increases. With increased relative velocity the
stimulus contributes during less time to the membrane potential of the neurons and thus
they are less likely to fire. This can also be understood by considering the tuning curves
introduced in section F.1.

In summary, the activity of the retina can easily be used to determine whether the
robot faces the learned stimulus when the robot is static and located near the center of the
arena. The motion of the robot may however hamper the detection of the learned stimulus
by influencing the activity of the retina. Therefore the evolved neural controller needs to
take this aspect into account to achieve successful homing behavior.

9.5 Evolution of the multi-cellular robot controller

Since we have verified that learning is possible with the retina, we now investigate the
evolution of a multi-cellular controller for the robotic task described in section 9.2 with
the morphogenetic system described in chapter 6.

The evolved circuit is composed of 8x8 cells, as illustrated in figure 9.9. The function-
ality of each cell is a spiking neuron capable of learning according to the model presented
in section 9.3. All the neurons receive the vision input and they are all connected to their
neighbors in a 5x3 neighborhood.

We evolve with the morphogenetic system the type of the neurons (excitatory or in-
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Figure 9.8: Retina activity in function of the robot angle for different rotation speeds. An
angle of 0 or2π means that the robot faces the learned stimulus. An angle ofπ means the
robot faces the opposite stimulus. Each plot indicates the retina activity for left and right
rotations. At low rotation speed (top left plot) there is no significant difference in activity
if the robot rotates left or right. This can be seen by the similar distribution of “plusses”
and “circles” in the plot. At higher rotation speed the activity of the retina tends to become
different depending on the direction of rotation (see bottom right plot). When the robot rotates
right, the activity of the retina is strongly reduced when the robot faces the learned stimulus
(there are few “plusses” at the angle of 0 and2π). On the other hand when the robot rotates
left the activity of the retina remains similar to what is obtained at lower rotation speed (the
number of “circles” at the angle of 0 and2π rad is similar to what is obtained at lower speeds).
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GA parameters Genetic coding
Population: 50 Coding: morphogenetic system
Crossover: 20% Diffusers: 16
Mutation: 1% Expression table: 10 entries
Selection: rank (15 best selected) Chromosome size: 296 bits
Elitism: 5 individuals are copied unchanged

Table 9.1: Parameters of the genetic algorithm and of the genetic coding.

hibitory) and the motor connections. A neuron can can be either connected to the left or
right motor, with either push or pull effect (i.e. the neuron makes the wheel rotate for-
ward or backward when it emits a spike), or the neuron may not be connected to a motor
at all. There are thus 10 predefined functionalities (2 signs multiplied by 5 possible motor
connections).

The speed of the wheels is set after measuring the activity of the motor neurons during
100 ms. The speed is equal to the number of motor neurons spiking on the push input,
minus the number of neurons spiking on the pull input, plus an evolved bias (in the range
-4 to +3) which ensures that motion is possible even in the absence of neural activity. A
speed of 1 corresponds to 8 mm/s. Vision is mapped to the network as with the retina
described in section 9.3.

The genetic string of the morphogenetic system is evolved by a simple genetic al-
gorithm. The parameters of the morphogenetic system and of the genetic algorithm are
indicated in table 9.1. Since there are there are 10 predefined functionalities the number
of entries in the expression table is 10. The total length of the genetic string is 296 bits (8
bits for the wheel bias followed by 288 bits for the morphogenetic system).

The fitness function rewards robots that home toward the learned stimulus and also,
with a lesser weight, it rewards individuals that tend to move forward (this puts selective
pressure on robots that explore their environment).

The instantaneous fitnessfi at each sensory-motor step is determined by the robot
speed and its presence on the correct fitness area. If the robot is not on the fitness area, the
instantaneous fitness is the sum of the normalized speeds of the wheels, when both spin
forward. Therefore if the robot does not find the fitness area, but moves continuously at
maximum speed its fitness is 1. If the robot moves over the fitness area the instantaneous
fitness is 2, 3 or 4, depending on how close the robot is to the center of the fitness area. If
the robot finds immediately the fitness area its fitness is 4. Formally:

fi =



2, 3 or 4, if robot is over the correct fitness area

vL+vR

2
, otherwise if vL and vR > 0

0, if vL or vR ≤ 0

wherevL andvR are the normalized speeds of the left and right wheels.
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Figure 9.9: The learning-capable multi-cellular controller is a 2D network of 8 by 8 neurons.
Each neuron is connected to its 14 neighbours (5x3 neighborhood). It is stimulated every
millisecond by the input coming from the camera after preprocessing (image stabilisation):
each column of pixels receives a contribution to the membrane potential which is proportional
to the brightness of the corresponding pixel. The type of the neurons (excitatory or inhibitory,
represented by the brightness of the cells in the picture) and their connections to the motors
are evolved. Neurons connected to motors can have a “push” or “pull” effect, that is they make
the wheels rotate forward respectively backward when they emit a spike. This is indicated by
the + and - signs on the L and R boxes that represent the left and right motors of the robot.
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Figure 9.10: Evolution of the maximum and average fitness (average of 5 runs) at the homing
task.

Since controllers should be equally capable of learning and homing towards the 2
stimuli that are in the arena, the fitness of the robot at learning and homing is measured on
both stimuli. The robot first learns the left-moving stimulus and does the homing behavior.
The fitness of the robot is the sum of the instantaneous fitness measured according to the
above formula:FLeft−moving =

∑
i fi. Then the robot learns the right-moving stimulus

and does the homing behavior which results in the fitnessFRight−moving. To maximize the
homing performance toward both stimuli and at the same time minimize the difference
between the two homing behaviors we use the following overall fitness is defined:

Foverall =

√
FLeft−moving · FRight−moving

max(1, |FLeft−moving − FRight−moving|)
The fitness of the robot is measured after learning which is done for 30 seconds with

the robot placed in the center of the arena and facing one of the stimulus. After learning,
the robot is randomly placed inside a 40x30cm area in the middle of the arena and the
fitness of its behavior is measured during 90 seconds.

Figure 9.10 shows the evolution of the maximum and average fitness (average of 5
runs).

Tests of the best evolved controllers on the real robot show that the robots can suc-
cessfully home toward the learned stimulus from a wide range of starting positions in the
arena. The robots tend to make slow turns, and when they face the learned stimulus they
move forward at a faster pace. Figure 9.11 shows typically observed homing behaviors.
Analysis of the evolved controllers show that this behavior is obtained by setting the speed
of one of the wheels with the evolved bias, whereas the other wheel is controlled by the
activity of some of the neurons in the retina. This results in a rotation behavior until the
robot faces the learned stimulus. In this case the activity of the retina increases, which
makes the wheel controlled by the neurons rotate faster and gives straight motion.

The behaviors of the robots are quite robust for a wide range of lighting conditions:
semi-dark room, room with sunlight, or room with neon light. The probable reason for
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Figure 9.11: Typical homing trajectories followed by the robots after learning. The left plot
corresponds to the trajectory after learning the upper stimulus; the right plot corresponds to
the trajectory after learning the lower stimulus.

this robustness is that an active LED display is used: it makes a light whose intensity only
weakly depends on external lightning.

The success of homing however depends on the starting position of the robot. To
quantitatively assess this performance, the homing behavior of the robot is tested from a
wide range of starting locations in the arena. The robot is successively placed on all the
nodes of a grid which has a 1 cm grid spacing. The robot is tested 20 times with a random
orientation on each node of this grid and it is allowed to move for 90 seconds. If after this
time the robot finds itself over the fitness area next to the stimulus that was learned, the
homing behavior is considered successful, otherwise it is not. The success rate is averaged
on the 20 trials and illustrated by a color map in figure 9.12. When the robot starts close
to a border it may fail to home toward the learned stimulus, either because it gets stuck in
the wall or because it does not seem to perceive the stimulus. Also when the robot starts
too close to the opposite stimulus, it sometimes homes on it instead of the learned one.
This happens because the stimulus intensity increases when closer to the displays, and
therefore also the activity of the retina, which misleads the robot.

Evolved controllers tend to have a slightly higher success rate when homing on one
of the learned stimulus. This asymmetry is caused by the effect of the ego-motion of the
robot that we evidenced in section 9.4: robots have a preferred direction of rotation which
leads to one of the stimulus being more easily detected than the other.

9.6 Discussion

One of the challenges of this robotic task is that the own motion (ego-motion) of the robot
may hamper the detection of moving stimuli. Yet the evolved neural controller is able to
correctly find the learned stimulus despite the robot moving continuously. The strategy
that is employed consists in limiting the speed of the robot, in particular the rotational
speed. Insects such as fruit flies also rely on motion information to perform navigation. A
commonly observed behavior is to navigate straight and then perform a rapid turn called
a saccade. During the saccade the visual information has no influence on the behavior
[157]. A similar behavior would be appropriate for the task described here, but it was not
found by evolution.

There are some locations where the robot cannot perceive the target stimulus (figure
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Figure 9.12: Color map of the normalized success rate of the homing behavior in function of
the starting position of the robot in the arena. Brightest areas are locations where the robot
has higher probability to home correctly on the learned stimulus. The left plot corresponds
to the learning of the upper stimulus; the right plot corresponds to the learning of the lower
stimulus.

9.6). However behavioral tests show that if the robot starts in one of those places, it is
often capable of homing correctly (figure 9.12). The strategy employed by the evolved
controller to achieve this consists in performing exploratory motions (e.g. large rotations)
in the arena until a strong enough visual cue is found.

For the purpose of evolution we provided a family of functionalities with motor neu-
rons that control the speed of the wheels by their activity. One drawback of relying on the
activity of neurons is that the amplitude of the stimulus (e.g. the amount of light emitted
by the displays) may influence the activity of the retina and therefore affect the homing
behavior. In practice we ensured that both displays had the same intensity by using a
common power supply.

We used predefined time constants for the neural model that we determined according
to the speed of the stimuli in the arena. These time constants may however be genetically
encoded. This may allow evolution to adapt the neural dynamics of the multi-cellular
controllers to the type of environmental cues that the robot can perceive (e.g. stimuli
moving at different speeds).

In this work we focused exclusively on vision. However there are other types of
dynamic cues and the multi-cellular circuit may be extended to handle them. For instance
sound cues may be used (time varying amplitude of the sound wave), as sound can be
efficiently processed with spiking neurons [184].

The multi-cellular neural controller that we used in this chapter was simulated in soft-
ware. The implementation of this circuit in the POEtic chip is only a matter of further
technical work which may follow the lines of the implementation shown in chapter 5. The
environment subsystem of the POEtic chip can execute the genetic algorithm to evolve
the genetic string of the circuit. It can interface the multi-cellular neural network with the
sensors and motors of the robot, and it can measure the fitness of the robot. The organic
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subsystem of the POEtic chip can implement the morphogenetic system (see appendix D)
and the multi-cellular neural network. In particular the neural model that we used in this
chapter was implemented in the organic subsystem of the POEtic chip by Torres et al. at
the Technical University of Catalunya, Barcelona [170, 171, 172]. The implementation
allows to fit in the organic subsystem of a single POEtic chip an excitatory-excitatory
synapse with the learning mechanism and the leaky membrane. By using time multiplex-
ing and coupling several POEtic chips together, thereby extending the size of the organic
subsystem, about 16 POEtic chips are necessary to implement the entire multi-cellular cir-
cuit of 64 neurons in hardware, assuming a reasonable operating frequency of 20 MHz2.

9.7 Summary

In this chapter we showed the evolutionary morphogenesis of multi-cellular circuits ca-
pable of learning for a robotic task that required learning capabilities. We considered a
robotic application in a dynamic environment, where environmental cues can only be un-
derstood through their temporal evolution. The objective was for a robot to learn a moving
visual stimulus and then perform a homing behavior toward the learned stimulus while
avoiding the other. Therefore, with the same controller, the learning of another stimulus
changed the homing behavior of the robot accordingly.

We first verified that a multi-cellular circuit composed of spiking neurons with spike-
timing dependent plasticity could learn and discriminate moving stimuli in the arena of
the robot.

We then evolved a multi-cellular network with the morphogenetic system to control
the robot. We evolved good controllers in terms of fitness and behaviors. In particular we
tested the best evolved controllers in the real robot and we found that they could home
toward the learned stimulus from most of the locations in the arena. We thus demonstrated
that the morphogenetic system could be successfully used to evolve multi-cellular circuits
to control the navigation of a robot in a task that requires learning capabilities. Finally
we estimated that 16 POEtic chips are necessary for the hardware implementation of this
multi-cellular circuit.

2The hardware implementation of the neural model requires 80 molecules of the POEtic chip for an
excitatory synapse with learning and the leaky membrane. The time required to update one synapse, add it
to the membrane and compare the membrane potential to the firing threshold is about 300 clock cycles [169].
Using a single POEtic chip to compute the 14 synapses of a neuron (i.e. the connectivity neighborhood of
a neuron) through time multiplexing requires14 · 300 = 4200 clock cycles for a neuron update. Since the
network is updated every millisecond the chip must operate at a frequency of 4.2MHz to implement a single
neuron in real-time. With a reasonable frequency of operations of 20 MHz, a single POEtic chip can update
4 neurons in real-time through further time multiplexing. Therefore the 64 neurons can be implemented in
an array of 16 POEtic chips.
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10 Conclusions

10.1 Summary and achievements

Conventional electronic circuits may lack applicability to ill-defined problems, robust-
ness, or adaptivity to changing operating conditions. Electronic circuits inspired from
principles observed in biology, so-calledbio-inspiredelectronic circuits, have the poten-
tial to address these challenges.

The design of these circuits can take inspiration from the way biological organisms
evolveover the generations, from the way theydevelopfrom a fertilized egg into multi-
cellular organisms, and from theirlearningcapabilities [146].

Until now bio-inspired hardware mostly focused on a single of these aspects: either
evolution, development or learning. These three aspects are however complementary.

In this thesis we took the stance that to fully take advantage of bio-inspiration, elec-
tronic circuits should encompass all three mechanisms of evolution, development and
learning. These circuits are called POEtic circuits, where POE stands for Phylogeny, On-
togeny and Epigenesis, which are respectively evolution, development and learning [178].
Although the concept of POEtic circuits in itself is not novel from this thesis [146, 178],
the actual implementation and the applications of these circuits is a novel contribution of
this thesis, as we will show below.

Conceptually these POEtic circuits, much like biological organisms, are multi-cellular
circuits that evolve following the principles of selection and differential reproduction, they
develop from a single cell and differentiate according to inter-cellular and environmental
signals, and they learn during their lifetime. In comparison to conventional electronics,
POEtic circuits are created automatically using evolutionary principles, even if only a par-
tial or high-level specification of the problem is known. Development provides a complex
genotype to phenotype mapping, that may lead to fault-tolerance or adaptive develop-
ment in order to cope with environmental changes. Finally learning allows these circuits
to memorize past events or adapt their response over time in order to improve their behav-
ior. Since bio-inspired mechanisms may vary depending on the applications, these circuits
are not directly implemented in silicon. They are obtained by programming a reconfig-
urable device, such as the POEtic chip, with the desired evolutionary, developmental and
learning mechanisms.

143
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This thesis dealt with the mechanisms required for the evolution of these bio-inspired
electronic circuit.

In the literature we found that most evolutionary algorithms used to evolve electronic
circuits do not exploit the complex dynamics of development mediated by gene regula-
tion which is seen in biological organisms (chapter 2). They generally employ a direct
genotype to phenotype mapping which seems to limit the scalability of the evolutionary
approach to more complex circuits. In addition, since the genotype to phenotype map-
ping is static, there are no cellular or environmental interactions during development that
could provide fault-tolerance or dynamic reorganization of the circuit in order to cope
with environmental changes.

We argued that to fully realize the potential of POEtic circuits, an evolutionary sys-
tem is required that combines both a genetic encoding and a more complex genotype
to phenotype mapping provided by a developmental system. In particular our objective
was to develop an evolutionary system with better evolvability and scalability than di-
rect genetic encodings and that allows inter-cellular or environmental interactions during
development. We called this evolutionary system themorphogenetic system.

While reviewing developmental systems applied to electronics, we made explicit dif-
ferent categories of developmental systems by introducing a novel classification which is
based on characteristics of their hardware implementation (chapter 3). This classification
allowed us to highlight one category of developmental system that is largely unexplored,
and which we decided to consider for the morphogenetic system. This category consists
of developmental systems that are implemented in hardware alongside the circuit under
development, that operate continuously throughout the “life” of the circuit, and that allow
a distributed, or cellular, implementation. Hardware and cellular implementation brings
fast genotype to phenotype mapping. This, together with continuous operation, allows
inter-cellular and environmental interactions to be taken into account during development.

In order to implement mechanisms of evolution, development and learning, we de-
scribed a multi-cellular architecture and a cell architecture that allows a flexible combina-
tion of these mechanisms (chapter 4). The cell architecture is not an original contribution
of this thesis [178], but we contributed to demonstrate how it fits in a reconfigurable de-
vice such as the POEtic chip, and we showed its applicability by evolving a multi-cellular
circuit in this chip that approximated Boolean functions and that controlled the naviga-
tion of a mobile robot (chapter 5). With respect to the overall objective of this thesis,
this step was important since the morphogenetic system assumed this architecture later
on. In addition, the circuit we implemented is capable of growth (a simplified mechanism
of development) and differentiation starting from a single cell. The growth mechanism
did not originate from this thesis, but we contributed by explaining how it could be ex-
tended and serve as a foundation to implement self-repairing and self-replicating circuits
in hardware.

On the basis of the architecture introduced previously we developed the morpho-
genetic system, a genetic encoding and developmental system inspired by the mechanisms
of gene expression and cellular differentiation in biological organisms (chapter 6).

One of our main concern, which is also one of the originality of our approach, is that
we explicitly designed a system that is computationally simple in order to be efficiently
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implementable in hardware. In the literature, developmental systems often mimic up to
some extent biological development. This usually leads to more complex systems that are
not adequate for hardware implementation.

Another originality of the morphogenetic system is that it makes minimal assump-
tions on the circuits that are evolved. Other than assuming they are multi-cellular, it only
requires local communication between neighboring cells. This allows this system to be
very general: it can be applied to any circuit composed of low-level as well as high-level
cell functionalities. This is important in order to evolve different type of circuits, such
as circuits capable of learning. In comparison, many developmental systems applied to
electronic circuits tend to operate directly on the configuration bits defining the circuit in
a particular type of reconfigurable device. Instead our approach relies on functionalities
predefined by the user. This allows it to be technology independent.

We implemented the morphogenetic system in hardware and we showed that, as de-
sired, few resources are needed for its implementation and that it is fast, allowing devel-
opment in constant time regardless of the size of the circuit.

We systematically tested the proposed morphogenetic system in increasingly complex
applications. We first investigated its performance in terms of evolvability and scalability
by evolving structures of differentiated cells (chapter 6). We found that the morphogenetic
system allowed to evolve a wide range of regular as well as irregular structures, and that
it provided better scalability to larger structures in terms of fitness than a direct genetic
encoding used as a reference. Furthermore we showed that the dynamics of the mor-
phogenetic system allowed to recover these structures of differentiated cells even at high
fault rates. This last point particularly highlights the benefits of a developmental system
running continuously within the cells of the circuit.

Afterwards we evolved functional multi-cellular circuits, although not yet capable of
learning. Cells of these circuits implemented the functionality of spiking neurons. We
demonstrated these circuits in tasks of pattern recognition and robot control (chapter 7).
We found that the morphogenetic system outperformed a direct genetic encoding in a
comparative test. We embedded the multi-cellular spiking controller in hardware on a
mobile robot. This demonstrated the hardware suitability of the spiking neural model that
we selected. More importantly, it also demonstrated the suitability of the whole concept
of multi-cellular circuits used as hardware controllers for mobile robots.

Finally we used the morphogenetic system to evolve multi-cellular circuits capable
of learning, thereby considering POEtic circuits which combine the three aspects of bio-
inspiration that we mentioned earlier: evolution, development and learning. These circuits
were composed of spiking neurons with a learning rule known as spike-timing dependent
plasticity. We used these circuits to learn and discriminate the direction of motion of syn-
thetic moving stimuli, and we demonstrated that the morphogenetic system could evolve
these circuits to improve their learning performance (chapter 8). In a comparative test the
morphogenetic system outperformed a direct genetic encoding in this task.

Building on these results we evolved multi-cellular spiking networks to control the
navigation of a robot in a task that required learning capabilities (chapter 9). In this task a
robot provided with vision had to learn a moving visual cue and afterwards it had to take
a specific action when it encountered the learned cue in the environment. In particular,
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with the same controller, the behavior of the robot changed when another cue was learned.
With this application we demonstrated that spiking neurons could be used to learn moving
visual cues and control the navigation of a robot according to these cues, and that learning
at the synaptic level of the network could induce learning at the behavioral level of the
robot. This robotic task is novel from an evolutionary robotics viewpoint, and it is also
novel in the framework of POEtic circuits, since it demonstrates in a single application the
advantages of the combination of evolution, development and learning in multi-cellular
circuits. In particular these last two applications may not have been possible without
learning in POEtic circuits.

In summary, the results that we obtained in a wide range of applications tend to con-
firm the generality of the morphogenetic and its better performance in comparison to con-
ventional direct genetic encodings. The hardware implementation of the morphogenetic
system shows that this can be achieved even with few hardware resources dedicated to the
developmental system.

10.2 Further research directions

This thesis contributed to open several research directions, and we highlight the most
important ones below.

Improved evolutionary morphogenesis

Although we obtained good results with the morphogenetic system, it is limited by the
fact that the signaling and expression mechanisms are hard-coded. This implies that some
phenotypes can not be genetically encoded by the morphogenetic system, but it is also
one of the reason for the simplicity of the morphogenetic system and its suitability for
hardware implementation. In comparison, more complex developmental systems rely
on an evolved cell program that controls the signaling and expression mechanisms and
therefore they may be more general.

The morphogenetic system can however be improved in several ways. For instance
variable diffusion ranges may allow more efficient evolution of phenotypic structures by
letting long range signals shape large structures while signals of shorter range take care
of local details. These diffusion ranges could be evolved. Evolution may also be used to
adapt the number of diffusers to the size and complexity of the phenotype. These mod-
ifications may improve the performance of the morphogenetic system with only a small
impact on its complexity, therefore keeping with our philosophy of a simple evolutionary
system.

Another research line may be to consider how new cell functionalities can be created
or modified by the evolutionary process for use by the morphogenetic system.

Finally the morphogenetic system assumes that the connectivity of a cell is part of
the cell functionality. This point was dictated by the reconfigurable devices available
when this research started, which required the connections between components to be
planned atdesign-time. Therefore the connectivity patterns of cells had to be predefined
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before evolution. However these last years saw the development of the reconfigurable
POEtic chip which addresses this point. The POEtic chip allows connections to be created
dynamically atrun-time. We already exploited this features to evolve the connectivity
between cells in chapter 5, but not yet in the framework of the morphogenetic system. The
morphogenetic system may be further extended to genetically encode the cell connectivity
separately from the cell functionality.

In this thesis we used genetic algorithms to evolve the genetic string of POEtic circuits.
Other search algorithms may however be considered and future work may investigate and
compare different search algorithms (e.g. simulated annealing, tabu search).

Dynamic reorganization

Dynamic reorganization was partly discussed in chapter 5 where we described how a
multi-cellular circuit capable of growth could be extended to perform self-repair by letting
it reorganize at run-time to avoid faulty cells and use spare cells instead. Implementing
this self-repair mechanism in hardware remains to be done.

Dynamic reorganization of POEtic circuits may also occur at the level the develop-
mental mechanism within the morphogenetic system. Future work may investigate en-
vironmental or morphological interactions during development with the morphogenetic
system. These interaction may allow adaptation to new environments or to changes in cir-
cuit morphology, e.g. when sensors or actuators are connected to the circuit. In particular
the morphogenetic system has been designed in order to accommodate such environmen-
tal or inter-cellular interactions, that can be mediated by “chemicals” or signals diffused
by the environment or special cells (e.g. sensors or actuators). Alternatively mechanisms
similar to developmental growth processes implemented in self-reconfiguring modular
robots may be investigated [168].

Morphogenetic fault tolerance

We showed that the dynamics of the morphogenetic system could provide fault tolerance
to patterns of differentiated cells. This aspect was however not explored in hardware.
It remains to be seen how this can be done, and in which context the dynamics of a
developmental system can outperform traditional fault-tolerance mechanisms (e.g. triple
modular redundancy).

Hardware support for bio-inspired mechanisms

In this thesis we programmed a reconfigurable device (the POEtic chip) to implement PO-
Etic circuits. While this chip already has some support for bio-inspired mechanisms (e.g.
self-reconfiguration and dynamic routing, see chapter 4), future reconfigurable devices
could include, after careful analysis, more specific mechanisms in silicon.

For instance silicon could be devoted explicitly to store the genetic string of the circuit,
to perform its integrity check (i.e. to detect if it is corrupted), and potentially also to
transfer it to neighboring cells to implement efficiently the growth of a multi-cellular
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circuit from a single cell. Silicon could also be devoted to the developmental system.
For instance the diffusion of signals or the matching of signals with a functionality to
express, if the morphogenetic system is taken for example, could be translated in silicon.
Translating some of these mechanisms in silicon reduces their size in comparison to an
implementation on a reconfigurable device. Therefore more complex circuits could be
implemented within a given silicon area.

In addition we believe that the characteristics of silicon should be exploited to the
maximum, and in particular also its analog characteristics.

Analog hardware allows to implement spiking neurons (i.e. the functionality of cells
that we considered in this thesis) with a few MOS transistors in subthreshold mode [112].
In the same way gene regulatory networks, that are the basis of development in biological
organisms, are also efficiently implemented with a few transistors [156]. Noise that oc-
curs in analog circuits may not be an issue as it also occurs in biological neurons [186].
Furthermore advent in floating gate technologies nowadays allows to store analog values
and design adaptive or learning circuits that are the core of bio-inspired systems [62].

The advantages of digital devices for bio-inspired systems should thus be weighted
with the potentially more compact implementations that analog devices may offer. To
conclude on a more general note, the future of reconfigurable devices for bio-inspired
hardware may well lie in mixed-signal reconfigurable chips, that offer digital and analog
functionalities for different bio-inspired mechanisms. These devices may not be unlike
field-programmable transistor arrays [154].



A POEtic chip

This appendix complements chapter 4 and describes in more details the POEtic chip.1

The architecture of the POEtic chip is illustrated in figure 4.6. It is composed of two sub-
system, an environment and an organic subsystem. These two subsystems are described
below.

A.1 Environment subsystem

The environment subsystem contains a 32-bit CPU, with 32 registers and 32 types of
instructions. It has instructions for random number generations and bit manipulation that
may be used in evolutionary algorithms. All the instructions are executed in one clock
cycle. The CPU architecture is a Harvard architecture: the CPU has has one dedicated
memory bus for the program code, and another for the program data. An AMBA bus is
used to interface the CPU with its peripherals. The CPU has communication peripherals
(UART, I2C, SPI and parallel port) that can be used to connect to external devices (e.g.
sensors or actuators). It has two timers that can be used to generate periodical events
(e.g. reading sensors). In addition it has a hardware 16x16 bit Booth multiplier, that can
be used to implement multiplications at high speed in hardware. Finally it contains the
organic subsystem interface. This interface allows to access the configuration bits and
the status and control bits of the organic subsystem. The organic subsystem is configured
through this interface (e.g. to implement multi-cellular circuits).

A.2 Organic subsystem

The organic subsystem shown in figure 4.6 is detailed in figure A.1. It is composed of a
molecular array and a routing array.

The molecular array is composed of locally interconnected reconfigurable logic ele-
ments calledmoleculesthat can be used to implement digital logic circuits. The routing
array is composed ofrouting units(RUs) that are capable of dynamic routing. Digital

1The images in this appendix are courtesy of Yann Thoma.
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Figure A.1: The organic subsystem is composed of two layers. The lower layer is an array
of molecules (reconfigurable logic elements) and the upper layer is an array of routing units
which are used for long distance communication and dynamic routing.

logic circuits (such as POEtic cells) are implemented with these molecules and routing
units.

Molecules are composed of a 16-bit register, that can be used to store data or imple-
ment a predefined function, a flip-flop that can be used to store one bit of data at run-time,
and a switch box that is used to exchange data locally between molecules. Figure A.2
illustrates the molecular array with a close-up on the molecule and the switch box.

Even though a molecule is always composed of the same elements, it can operate in
different modes according to its configuration. For example the 16-bit register can be used
as a shift memory (i.e. the register stores one bit of data at each clock cycle) or as a lookup
table (LUT). In this case control signals applied at the input of the register select which
one of its 16 bits is provided at the output. The main operating modes of the molecules
are described below and some of them are illustrated in figure A.3.

4-LUT The molecule is used as a 4-input LUT that can be used to implement a Boolean
function of 4 inputs. The Boolean function is stored in the 16-bit register, and
control signals applied at the input of the register select which bit is provided at the
output.

3-LUT The molecule is used as two 3-input LUTs. This mode allows an efficient imple-
mentation of arithmetic operations (comparison, additions). For instance one LUT
can compute an arithmetic sum and the other LUT can compute and propagate the
carry signal to the next molecule.

Shift memory In this mode the molecule can be used as a memory. At each clock cy-
cle the content of the 16-bit register is shifted and a new input bit is memorized.
The input bit can come from another molecule, or it can be the output of the shift
memory itself. In the latter case the molecule implements a rotating memory.
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Figure A.2: The molecular array is shown on the left, with a close-up on a molecule in the
center. The molecule contains a 16-bit memory that is illustrated by the vertical rectangle
in the middle of the molecule. A switch box, at the bottom right of the molecule (detailed
on the right), is used to exchange data between neighboring molecules using an array of
interconnections that are programmed with the multiplexers shown in the figure.

Output The molecule sends data to the routing unit to which it is connected. In this way
the molecule can send data over long distances to an input molecule via the routing
layer.

Input The molecule receives data from an output molecule via the routing layer.

Configure Molecules in this mode are used for self-reconfiguration. A configure
molecule can shift the content of its 16-bit memory into the configuration bits of
a neighboring molecule, therefore changing its functionality.

The configuration of the molecule is described by 75 bits that include the content of
the LUT, whether the output of the molecule is registered or combinational, whether the
molecule accepts to be locally enabled by a neighboring molecule, whether the molecule
is active on the rising or falling clock edge, which part of the configuration bits is modified
in case of self-reconfiguration (e.g. to limit the reconfiguration to the 16-bit register, to the
molecule functionality or to reconfigure the entire molecule), and finally the configuration
of the switch box.

The routing array is composed of locally connected routing units which are capable of
dynamic routing (figure A.4). A routing unit is connected to a group of four underlying
molecules. The functionality of the routing unit is given by the input or output molecule
in this group. For instance if there is one input molecule, the routing unit becomes an
input, and if there is one output molecule the routing unit becomes an output. Routing
units are passive when there are no underlying input or output molecules.

Routing units situated at the border of the array are connected to pins of the POEtic
chip. Therefore signals on the pins can be accessed from the molecular array via the
routing layer. Furthermore the chip is designed in such a way that several chips can be
interconnected pin-to-pin to achieve a larger array of reconfigurable logic. In this case
routing can be done across several chips via the border routing units.

Routing units support dynamic routing that builds connections automatically and at
run-time. Dynamic routing relies on identifiers that are used as the addresses of the routing
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Figure A.3: Molecules can be configured to operate in different ways. The 4-input LUT (top
left) is used to implement a Boolean function of 4 inputs. The 3-input LUT (top right) is used
to implement two Boolean functions of 3 inputs (the 16-bit register is split in two registers of
8 bits). The shift memory (bottom left) shifts the content of the register and accepts a new
input bit at each clock cycle. The output mode (bottom right) is used to send signals on long
distances via the dynamic routing layer to another molecule.
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Figure A.4: The routing layer contains an array of locally connected routing units. The
routing units are capable of dynamic routing: they have an address and can be inputs or
outputs. When the routing process starts, logic within the routing units is used to establish a
connection between input and output routing units that have the same address. Routing units
on the border of the array are connected to the pins of the chip.

units. Those identifiers are stored in the 16-bit register of the corresponding input or
output of molecule. A breadth first search algorithm implemented in the routing units
is used to find a connection between input and output routing units that have the same
identifier. Connections can also be changed, added or removed at run-time by locally
reconfiguring the input or output molecules. For instance, by changing the content of
the 16-bit register containing the identifier, the source or destination of a connection is
changed.

Figure 4.7 illustrates the dynamic routing mechanisms by showing several connections
between input and output molecules.
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B POEtic tools

To simplify development on the POEtic chip we developed a software emulator of the
POEtic CPU, which we called POEticIDE. It interfaces with the organic subsystem sim-
ulator called POEticMOL developed by Yann Thoma [162] to allow the co-simulation of
the POEtic CPU and the organic subsystem (i.e. the reconfigurable logic). This tool was
used to simulate and debug the applications described in chapter 5 before implementing it
on the prototype of the POEtic chip. This appendix describes the CPU emulator and how
it interfaces with the POEticMOL software.

B.1 POEtic CPU emulator

The simulation of VHDL code using standard tools (e.g. ModelSim) results in chrono-
grams representing the temporal evolution of signals used in the circuit. The usefulness
of this information is limited when complex programs are simulated.

Therefore an emulator of the CPU was designed based on the VHDL model of the
CPU. This emulator is called POEticIDE (figure B.1). It executes CPU programs by
the mean of a software model which decodes instructions one by one and updates the
variables representing the CPU state (registers, memory content, etc.) accordingly. The
CPU programs execute faster when the CPU is emulated than when the more complex
VHDL model is simulated. Speedups compared to the VHDL simulation in the order of
10 to 100 were observed, even though the emulator is not fully optimized.

The emulator provides a graphical user interface which shows the status of the CPU.
The code window shows the instructions in the program memory, together with their
opcodes and the corresponding comments that were placed in the source assembler file.
Breakpoints can be set and the code can be executed line by line or continuously until a
breakpoint is reached or the execution is stopped manually. The register window and the
memory window show the content of the registers and of the CPU memory, highlighting
the entries which were changed by the last instruction. A console displays information
relative to the simulation.

The emulator can import object files from the WinTim32 meta-assembler which was
customized for the POEtic CPU [162]. The emulator can export the program in a VHDL
ROM file for subsequent verification with a VHDL simulation. Export in the COE format
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Figure B.1: The POEtic CPU emulator (POEticIDE), showing assembler code, the registers,
and the memory content.

which is used by the Xilinx memory synthesis tools is also supported. This can be used
to initialize the content of the program ROM when synthesizing the CPU on an FPGA.

Plugins, in the form of DLLs, can be included to emulate memory mapped peripherals.
When the CPU reads or writes memory locations which correspond to the address space
of a plugin the corresponding function of the DLL is called. This allows to emulate new
peripherals of the system without having to modify the emulator. A peripheral emulating
an UART (Universal Asynchronous Receiver/Transmitter) was implemented using this
mechanism. When characters are written to its memory address, they are displayed in the
console of the emulator. This gives a convenient mean of displaying program information
from the assembler code in a way which is fully compatible with a hardware system
using a real UART. Further DLLs were written to interface the emulator with the organic
subsystem simulator. This is explained in the following section.

B.2 CPU and organic subsystem co-simulation

The CPU emulator is interfaced with the organic subsystem simulator called POEticMOL
developed by Yann Thoma and described in more detail in [162]. This allows the co-
simulation of CPU programs and of the reconfigurable logic of the POEtic chip.

Figure B.2 illustrates how the CPU emulator POEticIDE is interfaced with the organic
subsystem simulator. The CPU emulator software contains the POEtic CPU code inter-
preter, the user interface and a console which can receive text information such as debug
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messages. The CPU interpreter calls specific DLLs when the POEtic programs access to
pre-configured memory locations. In the figure there are DLLs to simulate a robot, write
to files on disk, print information in the console of the emulator, and eventually interface
with the organic subsystem.

The organic subsystem interface is mapped at the same address range in the emulated
POEtic CPU as in the hardware system described in chapter 5. Therefore circuits and
programs can be simulated or executed on the real chip without code modification.

This organic subsystem interface allows POEtic programs to reconfigure the organic
subsystem (e.g. to load new circuits in evolvable hardware experiments), to read and
write the inputs and outputs of the organic subsystem, and also to read and write the
status and control words of the organic subsystem. The status word indicates whether a
dynamic routing operation is in progress or whether there are congestions. The control
word includes the circuit chip enable and the reset and routing reset signals.

The organic interface DLL communicates by a pipe with the organic subsystem sim-
ulator, specifically the POEticIO DLL of the POEticMOL software. The pipe is used
to exchange configuration information, status and control words and I/O data. To allow
synchronized co-simulation of the CPU and the organic subsystem, a synchronization
mechanism is implemented by events between the CPU emulator and the POEticVHDL
DLL that is at the core of the organic subsystem simulator. In addition the POEtic CPU
programs can control whether POEticMOL updates the display of the organic subsystem
at each clock cycle. Deactivating the display allows faster simulation.
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C Phenotypic complexity and
morphogenetic system

parameters

This appendix complements chapter 6. It shows the influence of the parameters of the
morphogenetic system on the complexity of phenotypes randomly generated by the mor-
phogenetic system. We consider the complexity of phenotypes likely to be generated by
the morphogenetic system as type of representational bias. Knowing the effect of the pa-
rameters of the morphogenetic system on the complexity may help selecting appropriate
parameters for evolution.

We consider the case where the morphogenetic system is used to evolve phenotypes to
resemble predefined target patterns as in chapter 6. Here we use binary phenotypes (fam-
ily of two functions, e.g. black and white cells). Unless otherwise noted the parameters
of the morphogenetic system are the same as in section 6.3.

The parameters which affect the phenotypic complexity include the number of dif-
fusers, number of signal types and number of entries in the expression table (i.e. several
entries in the expression table may map to the same functionality). We mean by phe-
notypic complexity an indication of the structural irregularity of the phenotype in terms
of pattern sizes and shapes. A quantitative measure of the complexity may be the Kol-
mogorov measure of complexity or the compressibility [98]. The latter measure consists
in running a compression algorithm on the phenotype. The size of the compressed pheno-
type is an indication of its complexity (irregular phenotypes tend to be less compressible).

Here we consider compressibility with the Lempel-Ziv algorithm [138] as a measure
of complexity. To verify that it is related to the structural complexity in terms of size and
shapes of patterns in the phenotype, we compare it with another measure that is based on
structural characteristics of the phenotype. This measure is the number ofblobs in the
phenotype. A blob is a computer vision term that describes a connected region (or object)
in an image. Two pixels of same color that touch along the horizontal or vertical axis are
considered part of the same blob [51].

The number of blobs and the size of the compressed phenotypes is measured for a
large number of randomly generated binary phenotypes of various size (from 8x8 up to
64x64) with various parameters of the morphogenetic system (from 1 to 1024 diffusers,
from 2 to 8 entries in the expression table and from 1 to 16 type of signals). Figure C.1
shows that there is a strong correlation between the number of blobs in a phenotype and
its compressed size. Therefore compressibility is a reasonable indication of the structural
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Figure C.1: The phenotypic complexity in bytes is plotted againts the number of blobs in
the phenotype for many randomly generated phenotypes. The figure illustrates the correlation
between these two measures of phenotypic complexity.

complexity of the phenotypes.
The bias of the morphogenetic system toward phenotypes of different complexity is

measured by generating random binary phenotypes with different parameters of the mor-
phogenetic system and measuring the complexity of the phenotypes by using the com-
pression algorithm. All the data presented below are averages obtained on 25 random
binary phenotypes.

Figure C.2 shows the effect of the number of diffusers on the relative complexity of
phenotypes of different sizes. A small number of diffusers limits the complexity of the
phenotype. With increased number of diffusers the complexity also increases. However,
with too many diffusers, cells all tend to have signals of maximum intensities. There-
fore they express the same functionality, which reduces the complexity. The number of
diffusers for which the complexity is highest depends on the phenotype size.

Figure C.3 illustrates the effect of the number of signal types and number of diffusers
on the complexity in the case of a 16x16 array (results with other array sizes are similar).
For low number of diffusers, increasing the number of signal types decreases the com-
plexity (see the figure with a single diffuser). This happens because chemical layers tend
to have fewer or no diffusers, hence signal intensities are more likely to be uninitialized.
Therefore cells express with higher probability identical functionalities corresponding to
uninitialized signals. When increasing the number of diffusers, having more signal types
allows more complex combinations of signals in the cells and this generates higher struc-
tural complexity in the phenotypes (see the figure with 1024 diffusers). In this case, if the
number of signal types is restricted, large parts of the phenotypes are saturated with sig-
nals of maximum intensity. Therefore functionalities corresponding to saturated signals
are expressed with higher probabilities, which reduces the complexity. This is the case
for 16 and more diffusers in the figure.

There must be at least one entry in the expression table for each functionality in the
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Figure C.2: Relative complexity of phenotypes in function of the number of diffusers for
different array sizes. The complexity is normalized by the phenotype area for better scaling
in the figure. The other parameters of the morphogenetic system are: 4 types of signals and
2 entries in the expression table (one for each cell functionality). The number of diffusers
influences the phenotypic complexity: too few or too many number of diffusers lead to low
complexity (i.e. cells mostly contain either uninitialized signals or signals of maximum in-
tensity), whereas with an average number of diffusers the complexity is maximized.
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Figure C.3: Complexity in function of the number signal types and number of diffusers in a
16x16 array with two functionalities (2 entries in the expression table). With few diffusers the
complexity decreases when increasing the number of signal types because cells with unini-
tialized signals predominate, and thereby they express the same functionality. With many
diffusers increasing the number of signal types increases the complexity because more com-
binations of signal intensities are possible.
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Figure C.4: Complexity in function of the number of signal types and the number of entries
in the expression table. The phenotype is an array of 8x8 cells; the number of diffusers is 128.
The number of entries in the expression table varies from 2 to 16 (i.e. there are from 1 to 8
entries in the expression table for each cell functionality). The phenotypic complexity tends
to increase with more entries in the expression table.

family that is used, but it is possible to have several entries in the expression table that
correspond to the same functionality. Figure C.4 shows that on average the complexity of
the phenotypes tends to increase when several entries in the expression table map to the
same functionality.

In summary, we have shown that the number of diffusers, array size, number of signal
and number of entries in the expression table have a coupled effect on the complexity.
Although knowing which parameters to use may still need empirical tests, we speculate
that these parameters might be selected according to the foreseen complexity of the target
phenotypes. The practical application of this however remains to be investigated.



D Hardware implementation of the
morphogenetic system

This appendix complements chapter 6 and details the hardware implementation of the
morphogenetic system on the POEtic chip for use in multi-cellular circuits.

The morphogenetic system forms the mapping layer of the cells of these circuits. We
refer to the implementation of the morphogenetic system in a cell as amorphogenetic
element. The morphogenetic element is illustrated in figure 6.19 (right). It has 4 inputs by
which it receives signal intensities from neighboring morphogenetic elements, one output
by which it sends its own signal intensities to neighboring morphogenetic elements, and
one function output that indicates the functionality that the phenotype of the cell must
take.

Section D.1 describes architectural considerations leading to the implementation of
the morphogenetic system and section D.2 details the hardware implementation.

D.1 Architectural considerations

We focus on an implementation of small size, and the size depends of a number of archi-
tectural choices concerning the element interconnection, the communication format and
the type of arithmetics.

Each morphogenetic element has to receive 4 signals from each of its 4 immediate
neighbors. Each signal is encoded on 4 bits, with a fifth bit indicating whether the signal
is valid. Therefore the state of all the signals in a morphogenetic element is represented
by 20 bits (4 signals times 4 bits plus 4 valid bits). The morphogenetic element thus has
to receive 20 bits from each of its four neighbors. A parallel transfer of those bits would
require 80 inputs (20 bits times 4 neighbors) and 20 outputs, hence at least 100 routing
units. However the POEtic chip contains 36 routing units, and therefore a more compact
implementation of the signal exchange must be used. By transferring serially all the 20
bits describing the state of the signals in a morphogenetic element on a single line, only 4
inputs (1 input per neighbor) and one output are needed.

The communication format defines how data are serialized on a single line. Serial
transmission is easily implemented by connecting a 16-bit shift memory molecule to the
output of the morphogenetic element. To simplify the control logic to send, receive and
process the signals it is better to start the transmission on multiples of 16 clock cycles.

163
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Vs0s1s2s30

16 clock cycles

Figure D.1: Ordering of bits during the 16-clock cycle long transfer of a signal. The first bit
transferred is the valid bit, afterwards the 4-bit signal intensity is transferred starting by the
least significant bit. The remaining bits are 0’s.

In this implementation the 4 signals are transferred in 4 16-clock cycle long sequences.
Each sequence transfers one signal. During the sequence the valid bit is transferred first,
followed by the 4-bit signal intensity starting from the least significant bit. The remaining
bits are 0’s. Figure D.1 illustrates the communication format.

Computation can be done in parallel or sequentially (serial arithmetics). The latter
leads to more compact implementations but it is slower as a single bit of the result is
computed at each clock cycle. The molecules of the POEtic circuit are well suited for
serial arithmetic. Shift memories can be used to efficiently store 16-bit numbers and
a single 3-LUT molecule can do a serial addition, subtraction or comparison. For this
reason the implementation uses serial arithmetics. Although the number of clock cycles
for serial arithmetics depends on the bit length of the operands, it is best to extend the
operation to a multiple of 16 clock cycles because this corresponds to a complete rotation
of values stored in shift memories. It is convenient to define the termmolecular cycleto
mean 16 clock cycles.

D.2 Hardware implementation

The block schematic of the morphogenetic element is illustrated in figure D.2 and the
complete implementation is shown in figure D.8, D.9 and D.10. The morphogenetic ele-
ment is composed of two main parts: the signaling block and the expression block.

The signaling block handles I/O, the diffusion mechanism, and provides the signal
intensities for use in the expression block. Interconnections between morphogenetic el-
ements are implemented with the dynamic routing of the POEtic chip. Thecellular

input receives the signal intensity and the valid flag from neighboring elements over the
dynamic routing layer. The signal that is used by the morphogenetic process (i.e. one
of the valid incoming signals) is selected byinput select and then decremented by
decrement-compare. Normalize renormalizes the signal if it is invalid or below zero.
Finally the signal intensity and the valid flag is stored indiffusion memory. At the same
time as one signal is received, thecellular output sends the current intensity of the
corresponding signal to neighboring morphogenetic elements. Once all the 4 signals are
processed, thediffusion memory provides the signals intensities of the morphogenetic
element to the expression block.

The expression block provides thefunction output of the element by sequentially
comparing the signal intensities with each of the entries of the expression table. The con-
tent of the shift memoryexpression table is compared to the signal intensities in the
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cell with theHamming distance. This distance is compared to the currentshortest

distance by compare distance. If the current distance is shorter, then the shortest
distance is updated and thebest function found until now is updated with the ever in-
creasing value of thefunction counter, that represents the functionality that the phe-
notype layer of the cell must implement. Thefunction output is the output of a molecule
that is locally connected to the phenotype of the cell.

The morphogenetic element continuously executes the developmental program. One
developmental step consists of the sequential execution of the signaling and expression
blocks. Figure D.3 illustrates the execution sequence and indicates the time necessary to
complete each operation. The signaling block operates in two modes. During the first
5 molecular cycles it sends/receives the signal intensities to/from the neighboring mor-
phogenetic elements and updates the signal intensities according to the diffusion rules.
In the following 11 molecular cycles, the signaling block continuously provides at each
molecular cycle the four 4-bit signal intensities (i.e. a sequence of 16 bits) to the expres-
sion block that does the matching process. The expression block alternates between two
phases which implement the expression mechanism of the morphogenetic system. These
phases each take one molecular cycle. The sequence of operations is detailed below.

1. I/O: The signaling block sends the intensity of its signals and its valid bits to con-
nected morphogenetic elements. At the same time it receives those of its neighbors.
Each signal is sent and received during one molecular cycle according to the format
shown in figure D.1.

2. DIFF: With a delay of one molecular cycle from the reception of the signals from
the neighbors, the intensity of the signal in the morphogenetic element is updated
according to the diffusion rules. After 4 molecular cycles all the 4 signals are up-
dated. In the following 11 molecular cycles, the newly computed signal intensities
are provided to the expression block for the expression phase.

3. EXPR: The expression phase is executed to find the index of the entry in the ex-
pression table best matching the intensities of signals in the morphogenetic element.
Expression consists of two molecular cycles for each entry in the expression table,
plus two molecular cycles to initialize the process. Those molecular cycles are
EXPR-0 and EXPR-1. During phase EXPR-0 the Hamming distance is compared
with the shortest stored distance. During phase EXPR-1 the Hamming distance is
computed, the shortest distance and the best entry are updated if needed, and the
index in the expression table is incremented. EXPR-0-R and EXPR-1-R correspond
to the initialization of the expression phase.

4. EXPREND: The index is transferred outside of the morphogenetic element for use
by the phenotype layer of the cell.

A complete developmental step takes 16 molecular cycles, with 5 molecular cycles
used for I/O and diffusion, 10 molecular cycles used for expression (4 entries in the ex-
pression table), and the last molecular cycle outputs the functionality of the cell.
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Complete development, which requires 16 developmental steps, takes16 · 16 · 16 =
4096 clock cycles, regardless of the size of the circuit.
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Several control signals (see fig. D.3) manage the sequencing of the signaling and
expression blocks. Control signals are efficiently implemented by memory molecules
configured as rotating memories.

The molecular layout of the POEtic implementation is illustrated in figure 6.20. The
morphogenetic element is implemented in 56 molecules. They are distributed as follows:
12 implement control signals (one more molecule than the minimum required is used to
implement the same control signal to reduce the routing resources), 25 implement the
signaling block (5 are used as inputs and outputs via the dynamic routing layer) and 19
implement the expression block (4 of them are memories to store the expression table).

A 3 by 3 array of cells containing only the morphogenetic element are is illustrated
in figure D.4 after interconnection of these morphogenetic elements with the dynamic
routing mechanism of the POEtic chip.

D.2.1 Description of the functional blocks

The functionality of the blocks composing the morphogenetic element are described be-
low. All the functional blocks, including the sub-blocks forming the signaling and expres-
sion blocks (see figure D.2), perform the same sequence of operations periodically. This
period is a multiple of a molecular cycle. In particular every sub-block has a periodicity
of one molecular cycle. This means that, control signals being equal, each sub-block per-
forms the same sequence of operation in all molecular cycles. Blocks can have a delay
(latency) before data at their output reflects data at the input. Latency is also a multiple
of a molecular cycle. A latency of 0 means that the block implements only combinatorial
logic. When operations occur at specific clock cycles (e.g. a flip-flop is reset at clock
cycle 0), the clock cycle is always relative to the beginning of the molecular cycle.

Data are exchanged among blocks serially during molecular cycles. Thus data ex-
changes consist of 16 bit packets, although only some of those bits may be significant.
The serial format of the data is indicated as a sequence of 16 bits. Bits are exchanged on
the rising clock edge, starting from the rightmost bit in the sequence.

The following notation is used to describe the bits exchanged among blocks.si is
theith bit of a signal intensity.ti is theith bit of an entry of the expression table.hi
is theith bit of the Hamming distance.Ii is theith bit of the index of an entry in the
expression table.v indicates whether the signal is valid (1) or not (0).D is a bit indicating
whether the morphogenetic element is a diffuser (1) or not (0).0, 1 andX represent the
binary values 0, 1 and undefined respectively.

Signaling block

The signaling block handles the input/output and the diffusion mechanism. As illustrated
in figure D.3 it operates in two modes. During the first 5 molecular cycles it sends and
receives the signals and updates the signal intensities of the element according to the
diffusion mechanism. In the 11 following molecular cycles, it sends continuously the
chemical intensities to the expression block. The diffusion block is composed of the sub-
blocks shown in figure D.2.
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Figure D.4: A 3x3 array of cells containing the morphogenetic elements. The interconnec-
tions between the morphogenetic elements are done at run-time with the dynamic routing
mechanism of the POEtic chip.

Cellular input receives the signals from neighboring morphogenetic elements.
The valid bit indicating whether the signal is valid is received first. This bit is used
by Input Select to select one of the valid incoming signal during the first clock cycle.
Input Select outputs serially whether one of the inputs was valid and the corresponding
signal intensity (SigOut). Decrement & Compare then in parallel compares the incom-
ing signal to 0 (Zero), and decrements it by one (SigDec). Normalize provides the signal
intensity (ChemNorm) and the valid bit (ValidNorm) for storage inDiffusion Memory. If
the signal currently processed was already set (the valid bit ofPrevSignal is 1), or if the
molecular element is a diffuser for that signal (Diff is 1), thenNormalize forwards that
previously stored signalPrevSignal (i.e. once a signal intensity is set, it is not changed
anymore), or the value of 15 (i.e. the maximum signal intensity if the element diffuses
this signal).Diffusion Memory stores the signal intensities and the corresponding valid
bits during the first 5 molecular cycles. In the following 11 molecular cycles it rotates
the content of the signal memory to provide a 16-bit number (ChemOut) which is the
concatenation of the four 4-bit signals. This number is used during the expression phase.

Figure D.5 summarizes the operations of the sub-blocks during a molecular cycle.
Details regarding each sub-blocks are given below.
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Cellular Input
In -
Out Inx: 0 0 0 0 0 0 0 0 0 0 0 s3 s2 s1 s0 v

Latency 0

Four INPUT molecules provide the signals of other morphogenetic elements obtained
through the dynamic routing layer. Those signals are sent theInput Select element.

Input Select

In Inx: 0 0 0 0 0 0 0 0 0 0 0 s3 s2 s1 s0 v

Out SigOut: 0 0 0 0 0 0 0 0 0 0 0 s3 s2 s1 s0 v

Latency 0

This block acts as a multiplexer: it selects one of the valid inputs and directs it to the
output. Molecules MuxA-1, MuxA-2 and MuxB act as a 3-input multiplexer. Molecules
Sel0 and Sel1 generate the select signal for the multiplexer and molecules Sel0Latch and
Sel1Latch store it during clock cycle 0 for the rest of the molecular cycle. The first output
bit v indicates whether there is at least one input which has a valid signal. If not, this bit
is cleared and the remaining output bits are meaningless.

Decrement and Compare

In SigIn: 0 0 0 0 0 0 0 0 0 0 0 s3 s2 s1 s0 v

Out
SigDec: 0 0 0 0 0 0 0 0 0 0 0 s3 s2 s1 s0 v

Zero: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Z

Latency 1

The input signal is decremented by one by molecule SUB and sent to theSigDec output.
At the same time the input signal is compared to 0 by molecule CMPZ: theZero output
indicates whether the input signal is equal to zero (Zero = 0) or not (Zero = 1). The
latency of the comparison is 1 molecular cycle as all the input bits need to be processed
before thezero output can be updated, whereas there is no latency for the subtraction.
Therefore a delay is introduced in theSigDec output by molecule InputBuffer to ensure
that this output is available at the same time as theZero output.

Normalize

In
PrevSignal: X X X X X X X X X X X s3 s2 s1 s0 v

Signal: X X X X X X X X X X X s3 s2 s1 s0 v

Zero: X X X X X X X X X X X X X X X Z

Diff: X X X X X X X X X X X X X X X D

Out
ValidNorm: X X X X X X X X X X X X X X X v

ChemNorm: X X X X X X X X X X X s3 s2 s1 s0 X

Latency 0

This block provides the Diffusion Memory block with the new intensities of signals and
the new valid bits of the cell that must be stored. This is done on two seperatate outputs:
ValidNorm andChemNorm respectively.PrevSignal is the signal intensity and valid bit
that is currently in memory. The valid bit ofPrevSignal (i.e. the first incoming bit) is
stored by molecule ValidLatch in clock cycle 0. This bit controls the output molecule
ChemMemMux1 for the rest of the molecular cycle: if the previous signal is valid, then
the output signal is identical to the previously stored signal (i.e. the memory content
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does not change). Otherwise the outputs are set by molecule Normalize and the memory
content may change.

The output valid bit (ValidNorm) is set if Signal is valid or if the morphogenetic
element is a diffuser (Diff=1) for that signal. The output signalChemNorm is either the
input signal or 15 if the morphogenetic element diffuses that signal or if the input signal
is below zeroZero=1 (normalization). Molecule ChemNorm stores at clock cycle zero
whether normalization should occur. Molecule SignalDelay delays by one molecular cy-
cle the signal coming from the Diffusion Memory block to compensate for the latency of
the Decrement and Compare block.

Diffusion Memory

In
ValidIn: X X X X X X X X X X X X X X X v

ChemIn: X X X X X X X X X X X s3 s2 s1 s0 X

Out

S/F#=0

ChemOut: s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

ValidOut: X X X X X X X X X X X X X X X X

DiffOut: X X X X X X X X X X X X X X X X

S/F#=1

ChemOut: X X X X X X X X X X X s3 s2 s1 s0 X

ValidOut: X X X X X X X X X X X X X X X v

DiffOut: X X X X X X X X X X X X X X X D

Latency 4/0

This blocks stores the four signal intensities, the corresponding valid bits and whether
the morphogenetic element is a diffuser for any of the signals. Molecules ChemMem,
ValidMem and DiffuserMem are used for this purpose respectively. Upon start of a de-
velopmental step, data in DiffuserMem is organized as follows:
X X X X X X X X X X X D3 D2 D1 D0 X (rightmost bit is the MSB).Di indicates whether
the morphogenetic element is a diffuser for signali.

Data in ValidMem is organized as follows:
X X X V3 X X X V2 X X X V1 X X X V0. Vi indicates whether signali is valid.

Data in ChemMem is the concatenation of the four 4-bit numbers indicating the in-
tensity of each signal.

This block is at the interface between the signaling block and the expression block
and has two different functionalities depending on control signals/f#. Whens/f#=1
(first five molecular cycles of a developmental step) it updates the content of the signal
intensity and valid bit memories from theChemIn andValidIn inputs while providing
the previously stored signal intensity and valid bit at its outputs. This is done by shifting
the registers of the ChemMem and ValidMem molecules during 4 clock cycles in each of
the first 5 molecular cycles.

Whens/f#=0 (remaining molecular cycles of a developmental step) the content of
the ChemMem register rotates at each clock cycle to provide the expression block with
the 16 bits representing the intensity of the four signals. Molecule ChemMemMux2 is
used to feed the output of molecule ChemMem back to its input to do this rotation.

Latency of the block is 4 molecular cycle whens/f#=0 (i.e. 4 molecular cycles are
required to fill the Diffusion Memory) and 0 molecular cycles whens/f#=1.
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Cellular Output

In
Valid: X X X X X X X X X X X X X X X v

Chem: X X X X X X X X X X X s3 s2 s1 s0 X

Out Out: X X X X X X X X X X X s3 s2 s1 s0 v

Latency 0

An OUTPUT molecule is used to send signals to the neighboring morphogenetic elements
through the dynamic routing layer. Molecule OutMux is used to direct to theOut the
Valid input in clock cycle 0 and theChem input in the remaining clock cycles.Out is the
signal sent to the dynamic routing layer.

Expression block

The expression block looks for the index of the entry in the expression table which has
the smallest Hamming distance to the signals in the morphogenetic element. This is a
sequential process which iterates through all the entries of the expression table. For each
entry in the expression table the following sequence of operations is executed:

1. Compute the Hamming distance between the expression table entryn and the sig-
nals in the morphogenetic element

2. Compare the distance with the shortest stored distance

3. Update the shortest distance with the new distance if it is shorter; at the same time
update the index of the best entry withn

4. Increment the indexn

Each of these operations takes one molecular cycle to execute, however some oper-
ations can be done in parallel, thus reducing the number of molecular cycles to 2 per
entries in the expression table. Those two cycles are called EXPR-0 and EXPR-1 phases
in the implementation. During phase EXPR-0 the Hamming distance is compared with
the shortest stored distance. During phase EXPR-1 the Hamming distance is computed,
the shortest distance and the best entry are updated if needed, and the index in the expres-
sion table is incremented.

The total execution time in molecular cycles for the expression block is 2 plus twice
the number of entries in the expression table. The first two molecular cycles are necessary
to reset the expression block. In the current implementation there are 4 entries in the
expression table which gives 10 molecular cycles to complete the expression. Figure D.3
shows the expression block alternating between EXPR-0 and EXPR-1 phases. Expression
is initiated by a reset (control signalpmrst in molecular cycles 5 and 6 (EXPR-0-R and
EXPR-1-R in the figure) and at molecular cycle 15 the expression is completed and the
best matching entry is provided (EXPREND in the figure).

The operation of the sub-blocks composing the expression block during the molecular
cycles corresponding to phase EXPR-0 and EXPR-1 are illustrated in figure D.6. Details
regarding each sub-blocks are given below.
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Expression Table

In -
Out Out: t15 t14 t13 t12 t11 t10 t9 t8 t7 t6 t5 t4 t3 t2 t1 t0

Every entry of the expression table is composed of 16 bits and can therefore can be stored
in a single MEMORY molecule. The entire expression table is stored in 4 molecules set-
up as rotating memories (the output of last molecule is the input of the first one). Each
time an entry of the expression table is required to compute the Hamming distance, the
content of the expression table is rotated during a molecular cycle. Therefore at each
clock cycle one bit of the expression table is sequentially provided at the output of the
block. This allows efficient access to the expression table without any decoding logic.
Signalpmxtblshift controls when the expression table needs to be rotated.

Hamming Distance

In
a: s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

b: t15 t14 t13 t12 t11 t10 t9 t8 t7 t6 t5 t4 t3 t2 t1 t0

Out dist: h15 h14 h13 h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0

Latency 1

The MEMORY molecule Dist is used to store the Hamming distance betweena andb.
During phase EXPR-0 zeros are shifted in Dist, and the previously computed Hamming
distance is shifted out. Then during phase EXPR-1 the Hamming distance is computed.
Molecule XOR performs the exclusive or ofa andb. Whenever its output is 1, a 1 is
shifted in molecule Dist, otherwise no shift occur. At the end of the EXPR-1 cycle, the
Dist memory contains a number of 1 equal to the Hamming distance betweena andb.

Compare Distance

In
a: h15 h14 h13 h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0

b: h15 h14 h13 h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0

Out
dist: h15 h14 h13 h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0

a>b: X X X X X X X X X X X X X X X a>b

Latency 1

During cycle EXPR-0 the valuesa andb are compared by molecules CMPMOL1 and
CMPMOL2. a>b holds the result of the comparison at the end of the molecular cycle.
Outputdist reflects inputb with a delay of one molecular cycle introduced by Dist-
Buffer. This way both the result of the comparison and the distance are available in the
same molecular cycle. During cycle EXPR-1 the outputa>b keeps the result of the last
comparison during the whole molecular cycle. The comparator is reset in clock cycle 15
of the EXPR-1 phase.

Function Counter

In -
Out Fcn: I15 I14 I13 I12 I11 I10 I9 I8 I7 I6 I5 I4 I3 I2 I1 I0

The function counter indicates which entry of the expression table is currently used for
matching. MEMORY molecule IDXMem holds the counter and molecule IDXINC per-
forms the serial increment. In the EXPR-0 phase the counter is not updated. In the
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EXPR-1 phase IDXMem shifts out the counter value and shifts in the incremented value,
or in case of reset (pmrst=1) shifts in zeros.

Best Function

In
FcnIn: I15 I14 I13 I12 I11 I10 I9 I8 I7 I6 I5 I4 I3 I2 I1 I0

a>b: X X X X X X X X X X X X X X X a>b

Out BestFcnOut: I15 I14 I13 I12 I11 I10 I9 I8 I7 I6 I5 I4 I3 I2 I1 I0

MEMORY molecule BestIDX holds the index of the entry matching best so far the signal
intensities in the morphogenetic element. In phase EXPR-0 the content of BestIDX is
rotated and available onBestFcnOut. In phase EXPR-1 BestIDX shifts in a new index.
This index is either 0 whenpmrst=1, the output of BestIDX whena>b=0 (no change
in the index) or otherwiseFcnIn (the index coming from the Function Counter block).
Molecules BestIDXMUX1 and BestIDXMUX2 provide the appropriate new index.

Shortest Distance

In
DistIn: h15 h14 h13 h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0

a>b: X X X X X X X X X X X X X X X a>b

Out DistOut: h15 h14 h13 h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0

This block functions as the Best Function block. MEMORY molecule BestDist holds
the shortest distance found so far. In phase EXPR-0 the content of BestDist is rotated
and available onDistOut. In phase EXPR-1 the BestDist shifts in a new distance. This
distance is either all ones whenpmrst=1 (longest distance possible) or the output of Best-
Dist whena>b=0 (no change in the distance) or otherwiseDistIn (the distance coming
from the Compare Distance block). Molecules BestMUX1 and BestMUX2 provide the
appropriate new distance.

D.3 Control signals

A number of control signals are necessary to sequence the operations of the morpho-
genetic element. Those are provided by MEMORY molecules configured as rotating
memories. Figure D.7 illustrates the control signals which are used in the morpho-
genetic element. There are two categories of control signals: those with a periodicity
of one molecular cycle (upper half of the figure) and those which have a periodicity of 16
molecular cycles (a complete developmental step). The former are used sequence opera-
tions within a molecular cycle, for example to reset the flip-flop of adder or comparator
molecules, while the latter are used to sequence the operations of the expression and dif-
fusion blocks (e.g performing 5 molecular cycles executing the diffusion block, resetting
the expression block or indicating a that the function output of the morphogenetic element
is valid).
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E Implementation of the obstacle
avoidance robot controller

This appendix complements chapter 7. Section E.1 describes the FPGA module which
is used to implement the multi-cellular spiking neural network to control the navigation
of the mobile Khepera robot. Section E.2 details the hardware implementation of the
multi-cellular spiking network. Further information about the FPGA module and the
implementation may be found in [136].

E.1 FPGA module

The FPGA module is based on the APEX20K200E FPGA from Altera. Its architecture is
illustrated in figure E.1 and table E.1 lists the features of the module. The FPGA module
contains the FPGA together with memories and several connectors to interface with a
desktop computer and user extensions. The architecture of the module is similar to that of
the Excalibur development board [2], modified to perform as a fully Khepera-compatible
extension. Therefore the module is also compatible with the Excalibur development tools.
These tools allow to design systems on a chip that combine hardware and software. A 16-
and 32-bit CPU (called Nios) and several peripherals (e.g. communication peripherals,
timers) are provided for implementation in the FPGA by the manufacturer of the device.
The main parts of the architecture are described below.

Memories.The non-volatile Flash memory contains the configuration of the FPGA,
and user data or CPU programs. Two SRAM chips can be used to store data. These mem-
ories are fully accessible from the FPGA, while the configuration controller has partial
access only to the address bus and control signals of these memories.

Configuration controller.The FPGA is SRAM-based and its configuration is volatile,
i.e. its configuration needs to be downloaded after each power-up or reset. The configura-
tion controller (EPM7064) takes care of the download procedure by transferring the con-
figuration file from the Flash to the FPGA. The configuration controller is a non-volatile
device and is programmed only once. In normal use this device is never reconfigured.

User interfaces.The module provides buttons and LEDs that can be used in appli-
cations. Configuration switches allow to select configuration options of the module: for
instance self-reconfiguration can be enabled, an alternate FPGA configuration can be se-
lected, and in a multi-module system the clock source can be selected. In addition, several
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Figure E.1: Architecture of the FPGA module: in addition to the FPGA there are RAM and
Flash memories to store programs and data, and connectors to interface with external devices.

• APEX20K200E-2X FPGA with 200’000 gates, 106’496 RAM bits (8320 logic elements)
• 1 MByte Flash memory (512Kx16)
• 256 KByte SRAM (two 64Kx16 chips)
• 2 user and 2 system push-buttons, 3 user LEDs, configuration switches
• 26 3.3V user I/O, 2 5V-compatible user I/O (e.g. TTL serial line)
• 26 5V-compatible I/O for the Khepera bus or user I/O
• Stackable modules (multi-FPGA system sharing a single clock)
• RS232 connector with transceiver
• JTAG connector for Altera ByteBlasterMV and MasterBlaster programmers
• Compatible with Excalibur board software development Kit
• Supply voltage: 4.5V to 25V
• Power board generates 1.8V and 3.3V (1.4A each voltage)
• On-board logic for configuring the FPGA from Flash
• Self-reconfiguration may be triggered by the FPGA
• Oscillator (33MHz) and zero skew clock distribution
• Power-on reset circuitry
• Clock and power pins available for user extensions

Table E.1: Features of the FPGA module
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extension connectors are available to connect external devices.
Programming interfaces.A JTAG (Joint Test Access Group, a standardized type of

programming interface) is used to program the configuration controller or the FPGA with
a particular circuit. A serial interface with a RS232 transceiver (that adapts the serial
interface voltage to that used in desktop computers) allows a desktop computer to com-
municate with the FPGA and to download programs in the CPU memory.

Khepera bus.All the digital I/O pins of the Khepera robot expansion bus are con-
nected to the FPGA. When the module is used as a standalone device all the pins normally
connected to the Khepera become available for general purpose I/O.

The module is composed of two stacked printed circuit boards (or turrets), one that
contains the FPGA and the other that contains the power supply, as illustrated in figure
7.7. In addition several modules can be stacked sharing the same clock. This allows more
complex circuits to be implemented in several communicating FPGAs.

E.2 Details of the hardware robot controller

The architecture of the multi-cellular robot controller implemented in the FPGA is illus-
trated in figure 7.8. In this section we describe how the functional part of the cells (i.e.
the spiking neuron) is implemented, and how the processor in the environment subsystem
configures the multi-cellular spiking network (i.e. programs its functionality according to
the genetic string of the circuit).

E.2.1 Spiking neuron

Cells of the multi-cellular circuit are illustrated in figure 7.9. The functional part (pheno-
type layer) of the cell implements a spiking neuron. The spiking neuron has inputs that
are used to receive incoming spikes from neighboring neurons, and outputs that are used
to send outgoing spikes. To allow the circuit functionality to change when the genetic
string of the circuit is modified (i.e. to provide run-time reconfigurability) the functional
part of the cells have a function input which indicates the type of neuron (excitatory or
inhibitory) and connectivity pattern that should be implemented.

To translate this in hardware, the cells are designed to be totipotent: they implement all
the possible functionalities (combinations of connectivity pattern and neuron type), and
the appropriate functionality is selected at run-time according to the input. In particular
the cells are connected at design-time to 25 neighboring cells so that they can express all
the required connectivity patterns at run-time. A 26th input is used as an external input.

Figure E.2 shows the architecture of the neuron within the cell. Control inputs (clock,
enable, reset) allow to run, pause and reset the neuron. The inputs from connected
neurons arein1..inn, which convey the incoming spikes, andins1..insn which indicate
the type of connected neurons (spike “sign”). Thefunction input tells the neuron which
connectivity pattern to use and what is the type of the neuron. The outputout sends
outgoing spikes, andouts sends the type (sign) of the current neuron. This type is defined
by thefunction input.
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Figure E.2: Functional part of the cell that implements a spiking neuron. The main parts are
a register holding the membrane potential value, a connectivity mask block, an addend block,
a leakage and normalization block, a comparison block and a control unit.

The spiking neuron contains a 7-bit register (V) holding the membrane potential.1

To reduce the size of the implementation, the inputs are processed sequentially (time-
multiplexed implementation). The number of clock cycles for one network update is
equal ton + 1, wheren is the total number of inputs (n = 26 here).

The control unit generates the necessary sequence to multiplex the inputs in clock
cycles1 to n to update the register V with the contribution of the inputs (sok=0 during the
first n cycles). At clock cyclen + 1 (sok=1) the output is updated (emission of a spike if
the register is above or equal to the firing threshold) and the register V is loaded with the
content of theleakage and normalizationblock. This block decrements the value of the
register if it is below the threshold (leakage) or resets the register to 0 if its value is above
the threshold or below 0.

Theconnectivity maskunit generate the adequate run-time connectivity according to
thefunction input by providing a “connectivity mask” with a look-up table. This con-
nectivity mask is then ANDed with the inputs of all the neighboring cells to give the
effective input spikes. Those are, together with the signs, multiplexed and sent to thead-
dendblock. This block provides the value to add to the register V. SignalZ of thecontrol
unit indicates whether the addend block handles input1 (external input) which has a fixed
weight of 10, or inputs2 to n which have a weight of +2 or -2, depending on the sign of
the connected neuron.

E.2.2 Configuration of the multi-cellular circuit

A 16-bit Nios processor is implemented in the FPGA to interface the multi-cellular net-
work with the robot, run the evolutionary algorithm and the morphogenetic system, and
eventually configure the multi-cellular circuit according to the genetic string.

1The register size is defined by the number of inputs and by their maximum weights. Since there are
25 inputs with a weight of +/-2 and one external input with a weight of +10, the maximal value of V is
3+25 · 2+10 = 63 (the number 3 is the maximum value of V before a spike is emitted), and the minimum
value is0 + 25 · −2 = −50. Therefore 7 bits are sufficient to hold the values of V.
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Figure E.3: The configuration layer holds the functionality of each cell. It is implemented
as a writable array of registers. Each register is connected to thefunction input of the
corresponding cell.

Entity Resource use (LE) Longest delay
• Complete system 8222 23.3 ns
•CPU (incl. UART and I/O) 2121 17.9ns
• Network interface 163 7.83ns
• Net. and config. layer (64
cells)

5939 21.7ns

• Single neuron 109 13.3ns

Table E.2: Number of logic elements and longest register to register delay after place and
route for the complete system and its main parts (compiled individually). The network inter-
face is composed of 8 spike generators and 2 activity measurement units which are required
for the robotic application.

Configuring the multi-cellular circuit consists in setting all thefunction input of
the spiking neurons. The processor configures the multi-cellular circuit by writing in a
memory called the configuration layer. The configuration layer is illustrated in figure
E.3. It is an array array of registers, with one register per cell, that holds the value of the
function input of the spiking neurons. Therow andcol inputs allow to select a specific
register, and thewr (write signal) stores the value on thedata input in the selected register.

E.2.3 Implementation results

A multi-cellular network of 64 neurons is implemented in the FPGA module. Since the
FPGA runs at 33 MHz and a network update requires 27 clock cycles, the neural network
can be updated 1.2 million times per second, although the theoretical maximum frequency
of the system is about 42 MHz.

Table E.2 summarizes the number of logic elements (LEs, elementary functional
blocks in the FPGA) and the longest register to register delay for the complete system
and its main parts. Data for the main parts are obtained after a standalone compilation
of these parts. When the entire system is synthesized, optimizations may reduce the re-
sources required by some of the parts (e.g. by removing common blocks in these parts).
This is the case for the neuron: it uses 109 LEs alone but when part of a network of 64
neurons the resources are of about 90 LEs per neuron. The network and configuration
layer take most of the space (5939 LEs of the 8320s LE available in the FPGA).
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F Stimuli parameters and alternate
learning measures

This appendix complements chapter 8 that describes how a multi-cellular network of spik-
ing neurons can be used to learn and discriminate the direction of motion of a stimulus
applied to the network. In section F.1 we show the influence of the stimulus parameters
on the learning performance. In section F.2 we show some alternate metrics that may be
used to measure the learning performance of the network

F.1 Stimuli parameters

In this section we discuss how to select the parameters of the stimulus (noise, speed,
amplitude) and we show their influence on the learning performance in the task described
in chapter 8. The learning performance is the functionFact defined in section 8.4.

During learning, the stimulus parameters are selected so that neurons stimulated with
the bump of the stimulus are likely to fire. As the stimulus moves, the neurons which
fire tend to follow the bump of the stimulus. As a consequence the synaptic activation
of the connections oriented along the direction of the stimulus tend to increase (post-
synaptic neurons tend to fire after pre-synaptic neurons), whereas the synaptic activation
of connections oriented along the opposite direction of the stimulus tend to decrease (pre-
synaptic neurons tend to fire after post-synaptic neurons)

During recall, the stimulus parameters are selected so that the neurons fire under the
cumulated contribution of the noise and of the stimulus, but not with the contribution
of the noise or the stimulus alone. When this condition is not respected the learning
performance is affected (i.e. the network is not capable of discriminating the stimulus
direction after learning). Either the neurons may not be stimulated enough (e.g. too low
stimulus amplitude or level of noise) and therefore there is no activity in the network
regardless of the stimulus direction. Alternatively the neurons may be overstimulated
(e.g. too high stimulus amplitude or level of noise), and in this case the neurons always
fire regardless of the stimulus direction.

The noise, speed and amplitude of the stimulus used during recall have coupled influ-
ence on the learning performance. This is illustrated in figure F.1 that shows the learning
performanceFact for various stimulus parameters during recall. In particular the network
activity induced by a moving stimulus is function not only of its amplitude and noise but
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Figure F.1: Learning peformanceFact for a stimulus moving at 2 Hz (left plot) and 7 Hz (right
plot) for different parameters of the stimulus used during recall. Learning lastsTLearn = 10
seconds with the stimulus parameters of section 8.4. Noise and stimulus speed and amplitude
have a coupled influence on the learning performance. Consider the stimulus at 7 Hz with
amplitude of 40 mV/64. Below a level of noise of 20 mV/64 the performance drops because
the cumulated contribution of the stimulus and of the noise is insufficient to generate network
activity. Above this noise level the performance drops because noise tends to decorrelate the
network activity from the stimulus by generating activity which is independent of the stimulus
direction. Since the contribution of the stimulus to the membrane potential is function of the
stimulus speed, slower or higher stimulus speeds require a different combination of noise and
amplitude to achieve optimal learning performance.

also of its speed: fast stimuli contribute during a shorter time to the membrane potential of
the neurons, and therefore they increase the membrane potential less than slower stimuli.

In a real-world application, for instance a robot with a camera navigating in an arena
with different colored stripes on the walls, the distinction between stimuli parameters used
during learning and recall may not be appropriate. For instance if a robot learns during its
lifetime (online learning), “learning” and “recall” occur at the same time with the same
stimuli. Learning is however possible even if the stimulus parameters are identical during
learning and recall. This is illustrated in figure F.2 which shows a color map ofFact in
function of the stimulus amplitude and noise level for a stimulus moving at 6 Hz. The
left plot shows the values ofFact above 0 and the right plot shows the values ofFact

below 0. Lighter areas on the map indicate combinations of amplitude and noise where
learning induces a change of network activity in function of the stimulus direction (i.e.
they correspond to parameters where learning is possible).

Learning tends to be irreversible when identical stimuli parameters are used for learn-
ing and recall: once a stimulus is learned, the synaptic connections tend not to change
even if a stimulus moving in the opposite direction is applied to the network, unless the
stimulus amplitude or the noise is increased. This is caused by the relatively low activity
of the network when the stimulus moves backward after learning: there are not enough
connected neurons firing within the temporal learning window to reverse the synaptic
activations.

Stimuli may not only move to the left or right at a fixed speed during recall: the speed
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Figure F.2: Color map ofFact when learning and recall are done with the same stimuli
parameters. The stimulus speed is 6 Hz. To clarify the view the results are represented on two
maps: the left map indicates the values ofFact above 0 (values below 0 are clipped to 0); the
right map indicates the absolute ofFact when it is below 0 (values above 0 are clipped to 0).
Lighter areas correspond to parameters where learning is possible.

may vary, especially in a real-world application (e.g. the robotic application described in
chapter 9). The influence of the stimulus speed during recall on the learning performance
can be represented by tuning curves. Tuning curves describe the response of a network
(here the activity of the network) in function of a parameter that characterizes the stimulus
(here the stimulus speed ) [22]. Figure F.3 illustrates these tuning curves for various
learning speeds. The stimulus amplitude and noise, and the learning and recall duration
are indicated in section 8.4.

With slow stimuli speeds during learning (e.g. 2 Hz) the tuning curves tend to be
symmetrical, that is the network reacts in the same way to a forward and backward moving
stimulus: the network is unable to learn slowly moving stimuli if they induce activity in
connected neurons after a time longer than the learning window defined by the network
time constants. As expected, with higher learning speeds the tuning curves indicate a
higher network activity when the stimulus moves forward than when it moves backward.

For speeds during recall below approximately -5 Hz or above +8Hz the network acts
as a bandpass filter and the network activity drops. Indeed above a certain speed defined
by the network time constants, the peak of the stimulus may not stay long enough on any
neuron for the membrane potential of these neurons to reach the firing threshold. The
peak of the tuning curves (i.e. the recall speed at which the network activity is highest) is
given by the time constants of the neural model; i.e. these time constants determine the
range of speeds in which learning is possible.

In summary it is necessary to select an appropriate combination of stimuli parameters
(noise, speed and amplitude) and/or time constants of the neurons so that learning and
successful discrimination of the direction of motion of the stimulus is possible.
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Figure F.3: Tuning curves showing the network activity in function of the stimulus speed
during recall for different speeds used during learning. Each curve corresponds to a different
stimulus speed during learning, indicated in the legend of the plot. Negative and positive
speeds on the horizontal axis correspond to stimuli moving in the backward respectively for-
ward direction during recall.
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Figure F.4: A readout neuron connected to the neurons in the measurement column can be
used to detect the synchronous activity of those neurons.

F.2 Alternate measures of learning

In this section we describe two alternate measures of the learning performance for the
network described in chapter 8. One is based on the firing synchrony and the other is
based on the activity correlation. The parameters of the stimulus used during learning and
recall are indicated in section 8.4.

F.2.1 Firing synchrony

Figure 8.7 indicates that there are more neurons firing in synchrony when the stimulus
moves forward than when it moves backward. A measure of learning may be devised
from this observation. Synchronous activity may be detected by a readout neuron which
is connected to the neurons of the measurement column, as illustrated in figure F.4. By
selecting appropriate time constants this neuron can be made to fire when a predefined
number of incoming spikes are synchronous. In this case its activity would be higher when
the stimulus moves in the forward direction (synchronous spikes) than when it moves in
the backward direction.

Alternatively the average number of neurons that fire synchronouslySync in the mea-
surement column during a timeT can be determined directly:

Sync =

∑T
t=0 ρ(t)

N
,

whereρ(t) is the number of neurons firing in a column of neurons situated in the middle
of the network at timet, andN is the number of network steps where the valueρ(t) is
non-null fort in the interval[0; T ]. In other wordsN is the number of steps (milliseconds)
when there is non-zero activity in the measurement column.
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Figure F.5: Difference in average number of synchronous neuronsFsync in functionTLearn.
The dashed lines representSyncfw andSyncbw.

The learning performance is defined as the difference between the number of neurons
firing synchronously when the stimulus moves forward (Syncfw) and backward (Syncbw):

Fsync = Syncfw − Syncbw.

Figure F.5 showsSyncfw, Syncbw and Fsync in function of the learning time (the
recall timeTRec is 50 seconds, recall is repeated 10 times and the results averaged). As
expected for a measure of the learning performance,Fsync is close to 0 when the learning
time is small and increases with longer learning periods: as the learning time increases,
Syncbw tends to lower whileSyncfw remains relatively constant.

This measure is however less precise than the one devised in chapter 8 since it fails
to show a difference in learning performance after more than 2 seconds of learning (the
measure shown in chapter 8 continuously shows an increase of learning performance up
to about 15 seconds of learning).

F.2.2 Autocorrelation length

Another way to measure learning is to exploit the correlation between the activity in
the measurement column and the stimulus. The autocorrelation indicates the degree of
similarity of a signal compared to itself but shifted by a delayτ [22]. The autocorrelation
of ρ(t) is:

Corr(τ) =

∫ +∞

−∞
ρ(t)ρ(t + τ)dt.

The autocorrelation with the forward and backward moving stimulus is notedCorrfw

andCorrbw. The autocorrelation is illustrated in figure F.6 for the forward and backward
moving stimuli. As expected the autocorrelation drops faster with increasing values ofτ
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Figure F.6: Autocorrelation of the activity of one column with a forward moving stimulus
(left plot) and backward moving stimulus (right plot). Horizontal axis isτ . The autocor-
relation is computed on 50 seconds of network activtiy after 10 seconds of learning. The
horizontal line indicates where the correlation length is measured.

when the stimulus moves in the backward direction than when it moves in the forward
direction.

The learning performance can be defined in function of the autocorrelation length
of the activityρ(t) in the measurement column. The autocorrelation length is the value
of τ for which Corr(τ) drops to some lower value thanCorr(0). Here we consider
the correlation length as the value ofτ for which Corr(τ) = Corr(0)/5. The learning
performanceFcorr is defined from the autocorrelation lengthτfw andτbw as follows:

Fcorr = τfw − τbw.

Figure F.7 showsτfw, τbw andFcorr in function of TLearn. Fcorr is low for short
learning time and increases with longer learning time. It therefore satistifes the criteria
for a measure of the learning performance.

The autocorrelation length is however impractical to detect the stimulus direction in
real-time since computing it accurately requires to store the time of occurrence of spikes
during a relatively long period (here we measured the autocorrelation after recordingρ(t)
for 50 seconds), and the correlation operation is relatively intensive computationally.
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G DCAM Khepera camera module

None of the camera modules available for the Khepera robot filled the requirement of
high-speed (50 Hz) image acquisition, pre-processing and transmission over a serial line.
Therefore a custom digital camera interface module was developed for the Khepera robot
for the application described in chapter 9. It uses the commercially available OV5017
monochrome 384x288 CMOS camera chip from OmniVision [127].

In addition to acquiring images, the camera module also centralizes communication
with the Khepera robot. Therefore vision, sensory data and motor commands can all be
exchanged over a single serial communication line which is compatible with the POEtic
chip or a desktop computer.

G.1 Hardware

The high-level architecture of the camera is illustrated in figure G.1. The camera and its
PCB are shown in figure G.2. The camera module contains a 16 MHz 8-bit RISC CPU
(Atmel ATmega64L), the camera itself (OV5017), a 512KB SRAM, and a CPLD (Altera
EPM7256) which is used to implement interfacing logic. Those elements are detailed
below.

CPU The CPU supervises the operation of the camera module. It controls the acquisi-
tion of video frames and pre-processes them. In particular it does digital image
stabilization which is required by the rocking motion of the robot. It also commu-
nicates with the Khepera robot via a serial line to send motor commands and read
the robot sensors. Finally it sends the data of the various sensors to the POEtic chip
(vision, infra-red proximity sensors, floor sensors and wheel speeds) and it receives
the motor commands in return, via a serial line operating at 115’200 bps.

CPLD The CPLD serves as an interface for the CPU, the camera and the RAM. The
CPLD operates in two modes:normal or acquisition. In normal mode the RAM
is mapped in the memory space of the CPU. Therefore the CPU can access the ex-
ternal RAM with normal memory read and write operations. In acquisition mode
the CPLD takes ownership of the RAM bus to store the video data (this process
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Khepera

Glue logicPOEtic

RAM

CAMCPU

Camera module

Figure G.1: Architecture of the camera module (inside the dashed block). The module is
composed of a CPU, the camera and a RAM which serves as a frame buffer. Glue logic
implemented in a CPLD is used to grab the pixels coming from the camera and store them in
the RAM. The RAM is mapped in the address space of the CPU, therefore the CPU can access
transparently the whole grabbed image. The CPU interfaces with the Khepera robot (e.g. to
send motor commands or read sensors) and with the POEtic chip or a desktop computer (e.g.
to send images and receive robot commands) over two serial lines.

is described afterwards). In both modes the CPU can access the camera registers
and the CPLD registers which are also mapped in the memory space of the CPU.
The CPLD registers relate to image acquisition and low-level image preprocessing.
Registers specify the starting and ending line of the image to grab, and a downsam-
pling factor can be specified. Finally the CPLD can do on-the-fly binarization of the
grabbed image with a programmable threshold and pack 8 pixels in a single byte.

RAM The RAM is used to store the video frames (frame buffer) and can also be used to
store data of CPU programs.

Camera The OV5017 is a digital camera chip. It provides a continuous stream of bytes
(pixels) and control signals. Control signals include the pixel clock (indicating
when a new byte is available for reading), and signals indicating the start of a frame
and the start of a line. Those signals are used by the CPLD during acquisition.
A number of registers which are accessible by the CPU control parameters of the
camera such as the brightness, contrast, frame rate, gamma correction [127].

Image acquisition starts when the CPU writes a particular register of the CPLD. Once
written, the CPLD goes in the acquisition mode and takes control of the RAM address
and data bus. It then waits for the beginning of a new video frame. Once the start of the
frame is detected it stores each incoming byte from the camera in sequential addresses in
the RAM. Once the entire frame is acquired, it sets a bit in a register indicating the end of
the acquisition and triggers an optional CPU interrupt. At the same time it goes in normal
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Figure G.2: Top: camera module mounted on the Khepera robot. Bottom-left: top-side of the
camera module PCB with the CPU (left) the CPLD (right) and the camera connector (bottom).
Bottom-right: bottom side of the PCB with the RAM (middle-left).
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End line
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Transmitted image 

Figure G.3: The frame provided by the camera is a 384x288 image (camera image). The
CPLD grabs a part of this image from the start line to the end line (grabbed image). The
image which is eventually transmitted by the camera module is selected inside the grabbed
image according to the start offset (Hstart and Vstart) and the spacing between columns and
rows (Hspace and Vspace).

mode and releases control of the RAM bus which can now be accessed by the CPU to
read the video frame.

The camera provides an image every 20 ms. As the image cannot be acquired and read
from the frame buffer by the CPU at the same time, the maximum frame period is 40 ms
when full scale images are grabbed. It is however possible to grab a subset of the image
by specifying the starting and ending lines to grab with the corresponding CPLD registers.
In this case it may be possible to grab and access to images with a 20 ms period, e.g. by
acquiring only half-height images. Eventually the CPU processes and transmits a subset
of the grabbed image. This allows software subsampling or to select regions of interest.
The subset is selected by setting the appropriate offset to the beginning of the image to
transmit (Hstart, Vstart) and by setting the spacing between rows and columns of pixels
(Hspace, Vspace). These parameters are set by sending the corresponding commands to
the module. Figure G.3 illustrates the image transmitted by the camera (camera image),
the part which is acquired by the CPLD (grabbed image) and eventually the part that is
transmitted (transmitted image).

G.2 Software

The task of the operating system (OS) of the camera is to transmit over the serial line the
camera images and the sensory information of the Khepera. At the same time it listens
for commands received over the serial line.

Commands received over the serial line can be motor orders for the Khepera robot,
or changes of parameters of the module (e.g. size and position of the frame to transfer).
Commands consist of packets of 5 bytes where the first byte indicates the operation (e.g.
motor command) and the following bytes are command-dependent parameters (e.g. motor
speeds).

The operating system continuously reads the sensors of the Khepera robot in back-
ground (proximity and floor sensors, wheel speeds), and mirrors their state in local vari-
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Synchronization Header 1 Payload 1 Header n Payload n
(9) (s1)(9) (9) (sn)

Data frame

Figure G.4: Structure of the data frame sent by the camera module and size of the respective
fields. The start of a data frame is indicated by a synchronization marker. Data is follows in
different payloads which are indicated by a preceding header.

ables. Each time a new frame is acquired, the operating system streams a data frame
containing the desired part of the image and the mirrored state of the Khepera sensors on
the serial line.

The format of the data frame is described in figure G.4. It starts by a 9 byte long
synchronization marker. It is used to synchronize the receiver on the start of the frame.
Afterwards the data is transferred in different payloads. The start of the payload is iden-
tified by a 9 byte long header. The length of the payload is not encoded as it is known
to end when a new header or a synchronization marker is encountered. This allows data
of unpredictable length to be transferred directly on the serial line without the need to
do an intermediate buffering, thereby reducing the computational requirements. Data of
unpredictable length can occur in the case of image compression.

In the application described in chapter 9 the data frame consists of two payloads. The
first is fixed length and contains the data relative to the Khepera sensors. The second
contains the video data and it may be of variable length, depending on the image trans-
mission mode or image size. In particular the horizontal and vertical image size, as well
as the horizontal pixel interval and vertical line interval are programmable. The image
transmission modes are described hereafter.

Raw mode Images are acquired and streamed without pre-processing: for each pixel a
byte is transferred.

Raw filtered This mode differs from the raw mode in that subsampled images are filtered
along the horizontal axis before being transferred to reduce image noise. Filtering
is done by sending the average ofn pixels, wheren corresponds to the horizontal
subsampling factor.

Temporal DPCM When there are relatively small changes from image to image, it is
worth sending the difference between the current and the previous image with a
more coarse quantization. Here this difference is encoded in 4 bits, therefore reduc-
ing the frame size by a factor two. This mode is however only suited for quasi-static
images, or when objects move slowly, as no adaptive quantization is yet imple-
mented.

JPEG-LS The speed of the serial line limits the maximum frame rate. The size of images
may be reduced by compression, at the expense of higher CPU usage on the camera
module.



202 DCAM KHEPERA CAMERA MODULE

Image Raw JPEG-LS-2 JPEG-LS-5 JPEG-LS-10 JPEG-LS-15
bytes ∆T bytes ∆T bytes ∆T bytes ∆T bytes ∆T

384x288 110592 9.4 27000 7.8 18000 6.1 12000 4.3 9500 3.6
192x144 27648 2.4 8500 2.0 6000 1.8 4000 1.4 3500 1.2

96x72 6912 0.62 2700 0.56 1900 0.50 1400 0.42 1200 0.38
48x36 1728 0.20 950 0.16 650 0.16 450 0.14 400 0.14
24x18 432 0.06 300 0.06 200 0.06 150 0.06 120 0.06
10x8 80 0.02 - - - -

Table G.1: Size of the transmitted frames in bytes and frame period in seconds for differ-
ent image size and compression ratios. The number after JPEG-LS indicates the maximum
allowed pixel error. For the 10x8 image only half of the camera frame was grabbed, to demon-
strate that the camera module can provide images at 50 frames per seconds. Image size and
frame rate in JPEG-LS mode are based on several measures in a typical office environment.

Performing image compression on a 16 MHz 8-bit microcontroller requires a low
complexity compression algorithm. The JPEG-LS low-complexity coder for still
images with lossless and near-lossless compression [185] is used to compress the
images with an adjustable error level before streaming the video frame over the
serial line. The maximum pixel error is set by sending a corresponding command
to the camera module.

In practice compression is beneficial for large images, where the bottleneck is the
transmission speed. For smaller images the bottleneck is the processing time and in
this case it is more advantageous to stream the images without compression.

Table G.1 illustrates the size of the video frame and the corresponding frame period
for different image sizes and compression ratios. Figure G.5 illustrates how the
images acquired by the camera look like.

Stabilized image This mode is used in the robotic application of chapter 9. The OS
does vertical image stabilization which is based on the assumption that the bright
areas in the image move slowly in the vertical axis. This assumption is verified
in the environment in which the camera is used. Stabilization is done by aligning
the images on their brightest line with a low pass temporal filter which limits the
maximum change of alignment from frame to frame. The image is streamed without
compression.

In the robotic application described in chapter 9 the stabilized image mode is used. In
this application the camera module acquires images every 20 ms and the video payload is
of fixed length. The size of the data frame is 77 bytes and it contains a 24x1 image and
all the sensors of the Khepera robot.
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Raw JPEG-LS-2

JPEG-LS-5 JPEG-LS-10

JPEG-LS-15

Figure G.5: Images provided by the camera module in 384x288 with different compression
ratios.
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H Optimization of the retina size
and connectivity

In this appendix we describe the optimization of the size and connectivity of the multi-
cellular network orretina that is used in the robotic application of chapter 9. The mapping
of the vision on the retina is done as described in section 9.3.

This retina is based on the multi-cellular network used in chapter 8. In that chapter
we used a learning network composed of an array of 20 by 20 neurons, with each neuron
locally connected to their 24 neighbors in a 5 by 5 area. Simulations of this network were
however slower than real-time. When a real robot and real stimuli are used the network
must operate in real-time and therefore the size and connectivity of the retina must be
optimized to reduce the computational requirements. These optimizations also minimize
the resources (i.e. the number of POEtic chips) required for a hardware implementation
of the network.

In chapter 8 we showed that the activity of the retina was higher when facing the stim-
ulus which had been learned than when facing the stimulus which moved in the opposite
direction (opposite stimulus). The activity of the retina is thus an information that may be
exploited by an evolved network to control the navigation of the mobile robot.

We therefore want to find the network size and neural connectivity which maximizes
the sensitivity of the retina to the learned stimulus, that is the one with the highest learning
performance. We use the measure of the learning performance introduced in section 8.4.
The learning performanceFact is defined as the difference between the activity of the
retina when the robot faces the learned stimulusFforward and when the robot faces the
opposite stimulusFbackward:

Fact = Fforward− Fbackward.

Since we not only want to maximize the difference of activity, but also minimize the
number of neurons and the size of the connectivity neighborhood, we normalizeFact by
the number of synaptic connections:

Fact,norm =
Fact

M ·N · neighbors
,

whereM andN are the size of the retina andneighbors is the size of the connectivity
neighborhood.
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Learning Recall, forward Recall, backward

Figure H.1: Process used to measure the performance of the retina. First the robot faces the
stimulus to learn for someTLearn time with the learning mechanism activated. Afterwards
the synaptic weights are frozen and the robot faces the learned (forward) stimulus forTRec
time. The total recorded network activity during this time isFforward. Eventually the robot
faces the opposite (backward) stimulus for the same time. The total recorded network activity
during this time isFbackward.

Figure H.1 illustrates the process which is used to measure the learning performance
in the robotic context. The robot is always static, in the center of the arena. It first faces
the stimulus to learn with the learning mechanism activated. The learning timeTLearn
is 30 seconds. The amplitude and level of noise are given in section 9.3. Afterwards the
synaptic weights are frozen. The amplitude and the noise level is set to those used during
homing (section 9.3). The activityFforward is measured duringTRec = 3 seconds
with the robot facing the learned stimulus. EventuallyFbackward is measured for the
same duration with the robot facing the opposite stimulus. The stimulus is always a 6 Hz
moving bar.

Retinas with sizes ranging from 1x1 up to 20x20 and that are wider than higher are
considered. Neurons are connected to their local neighbors. Connectivity neighborhoods
of 5x1, 5x3, 5x5, 7x1, 7x3 and 9x1 are considered (the first number is the width of the
neighborhood). The neurons in the retina consist of regularly placed excitatory and in-
hibitory neurons, with the excitatory neurons representing 80 % of the total number of
neurons. The distribution of these neurons is identical to that indicated in section 8.3.

Figure H.2 illustratesFact,norm for the different settings. The settings which maximize
the normalized performance are an 8x8 network with a local connectivity of 5x3. Com-
pared to the network used in chapter 8 with 9’600 synapses (20x20 network with 5x5
connectivity1) the number of synapses is reduced by a factor 10 (the 8x8 network with
5x3 connectivity has 896 synapses) and the learning performance is substantially identi-
cal. With this new retina real-time simulation of the network is possible on a 2.2 GHz
AMD Athlon XP computer.

1Neurons are not self-connected
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Figure H.2: Normalized performanceFact,norm of the different retina settings (average of 50
measures). Brighter areas indicate higher performance settings. The network settings leading
to the highest performance correspond to a network of 8x8 neurons with a 5x3 connectivity
(top right plot).
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Glossary

Application Specific Integrated Circuit (ASIC) ASICs are custom integrated circuit
designed for a specific application. They are cheaper than FPGAs when manu-
factured in large quantities. They may also offer better protection against reverse
engineering than FPGAs.

Cell In the POEtic terminology the cell is the basic functional element of POEtic circuits.
Cells have external inputs and outputs, and take a functionality specified by the
genetic string of the circuit. The architecture of a cell is composed of three layers:
a phenotype layer, that is the functional part of the cell; a genotype layer, that
contains the genetic code of the entire circuit; and a mapping layer, that decodes the
genetic string to configure the phenotype layer. To allow dynamic reorganization,
cells are totipotent: they can take any of the predefined functionalities that may be
used in POEtic circuits. When POEtic circuits are implemented in the POEtic chip,
the cells are implemented in its organic subsystem and they are built from logic
elements called molecules.

Chromosome See genetic string

Dynamic routing Process by which routing units in the organic subsystem of the POEtic
chip interconnect at run-time in a fully distributed way. This process relies on
identifiers marking routing units as sources or targets of connections. The dynamic
routing process interconnects sources and targets which have the same identifier.

Environment subsystem The environment subsystem is the part of the POEtic chip that
interfaces the organic subsystem with the outside of the chip (i.e. its environment).
It is composed of a custom 32-bit CPU and communication peripherals for inter-
connection with sensors or actuators located outside of the chip.

Evolution (of a system) Automatic creation of a system by using an evolutionary algo-
rithm.

Evolutionary algorithm (EA) Family of search and optimization algorithms that are in-
spired by the evolution of biological organisms (fit organisms tend to have a higher
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probability to transmit their genetic material). Evolutionary algorithms typically
operate on a population of candidate solutions that are points in the search space
(also called chromosomes, genetic strings or individuals). The candidate solutions
are reproduced according to their performance or fitness at optimizing the problem
at hand, and variations are introduced by randomly mutating and recombining their
elements.

Fitness In an evolutionary algorithm, the performance of candidate solutions is measured
according to their ability to optimize the problem at hand. The performance of a
candidate solution is known as its fitness.

Fitness landscapeThe fitness of genetic strings can be represented by a surface in a
high dimensionality space known as the fitness landscape. Genetic strings are co-
ordinates in the landscape, and the fitness of these genetic strings represents the
height of the surface at the corresponding coordinates.

Field-Programmable Analog Array (FPAA) Reconfigurable device that can be pro-
grammed to implement analog circuits.

Field-Programmable Gate Array (FPGA) Reconfigurable device that can be pro-
grammed to implement digital circuits. FPGAs are used for prototyping before
producing application specific integrated circuits (ASICs), or in small to medium
scale series when the costs of designing ASICs is prohibitive.

Gene In biology a gene is a segment of DNA on a chromosome. It contains a coding
region and a control (or regulatory) region. The coding region encodes the sequence
of amino-acids to build a protein. The control region controls the expression of the
gene according to transcription factors that bind on this region.

In evolutionary computation, a gene is a part of the genetic string that encodes a
parameter which is evolved.

Gene expressionIn biology a gene is said to be expressed if it is decoded to build the
corresponding protein. Genes that are expressed thus produce proteins. The expres-
sion of genes is regulated by transcription factors, that can be produced by other
genes. Therefore complex patterns of gene activation and repression may arise in
biological cells.

Genetic operators Operators that are used in evolutionary algorithms to mimic the pro-
cesses of natural evolution. For instance the selection operator selects individuals
for reproduction according to their fitness, the crossover operator exchanges genetic
material between two individuals, and the mutation operator introduces random
variations in individuals.

Genetic string The genetic string represents the parameters that are optimized by an
evolutionary algorithm. The genetic string is a string of digits or bits (if the digits
are in base 2). It is also referred to as a chromosome, or as an individual in the
population on which evolutionary algorithms operate.
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Genotype The genotype contains all the genetic material or “instructions” necessary to
build a biological organism or an artificial system.

Genotype-phenotype mappingProcess by which the genotype is decoded into the cor-
responding biological organism or artificial system.

Hardware Description Language (HDL) Family of languages that describe textually
the behavior of a circuit. Circuits can be synthesized from such a description using
appropriate tools. VHDL and Verilog are two of the most common HDL in use.

Individual A member of the population of candidate solutions or genetic strings on
which evolutionary algorithms operate.

Molecule Elementary logic element in the organic subsystem of the POEtic chip. It
contains a flip-flop, a switch box for local routing, and a 16-bit register that can be
used as a shift memory or as a lookup table to implement Boolean functions.

Organic subsystemThe organic subsystem is a part of the POEtic chip composed of re-
configurable logic (molecules and routing units) where organisms, or multi-cellular
circuits, are implemented.

Organism In the POEtic terminology an organism is a multi-cellular electronic circuit
implemented in the POEtic chip.

Programmable Array Logic (PAL) Programmable electronic circuit suited to imple-
ment Boolean functions that can be expressed as sum-of-product terms.

Phenotype The phenotype is the observable part of a biological organism or of an artifi-
cial system that results from the decoding of the genotype.

POE Model of bio-inspiration that includes evolution (Phylogeny), development (On-
togeny) and learning (Epigenesis).

POEtic chip A custom reconfigurable device designed to implement bio-inspired mech-
anisms in hardware. In particular it may be used to implement POEtic circuits.

POEtic circuit Name given to multi-cellular circuits capable of evolution, development,
and learning. POEtic circuits are composed of identical cells that contain a pheno-
type, mapping and genotype layer.

Reconfigurable deviceAn integrated circuit that can be programmed after manufactur-
ing to implement electronic circuits. Reconfigurable devices contain logic elements
and routing resources. Logic elements are used to implement various Boolean func-
tions, or memory elements. Routing resources are used to interconnect the logic
elements. Reconfigurable devices are programmed by downloading a configuration
string that describes the functionality of the logic elements and their interconnec-
tions.
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Routing unit Element used in the organic subsystem of the POEtic chip to implement
long distance connections (typically inter-cellular connections) or inter-chip con-
nections. Routing units are capable of creating connections dynamically at run-time
(dynamic routing).

Schematic A drawing or sketch that shows how the components of a system are con-
nected together, for example in an electrical circuit.

Transcription factor Name given to proteins regulating the expression of genes (i.e. ac-
tivating or repressing their expression).
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